**Electronic Supplementary Information** 

## Synthesis of low-silica CHA zeolite with exceptional selectivity for radioactive <sup>137</sup>Cs<sup>+</sup>

Wenfeng Hao,[a] Xiaojun Yan,[b] Xiliang Guo,[b] Wentao Wang,[c] Taihong Yan,[c] Jia-

Nan Zhang, <sup>[d]</sup> Wenfu Yan,<sup>\*[a]</sup>

| а. | State Key Laboratory of Inorganic Synthesis and Preparative Chemistry  |
|----|------------------------------------------------------------------------|
| C  | ollege of Chemistry, Jilin University, Changchun 130012, China.E-mail: |
| y  | <u>anw@jlu.edu.cn</u>                                                  |

<sup>b.</sup> Division of Waste Disposal Technology, Waste Management Department, China Institute for Radiation Protection, Taiyuan 030006, Shanxi, China

<sup>c.</sup> Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China

<sup>d.</sup> College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China

\* Co-corresponding authors

Email: yanw@jlu.edu.cn

Table S1 Low-silicon CHA zeolite synthetic methods

| Synthesis formula                                                                                                                                         | methods                    | Product<br>Si/Al | Ref          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|--------------|
| SiO <sub>2</sub> : 0.05 Al <sub>2</sub> O <sub>3</sub> : 0.2 NaOH: 0.2 TMAda <sup>+</sup> : 10 H <sub>2</sub> O                                           | OSDA                       | 2.8              | 1            |
| 5 SiO <sub>2</sub> : Al <sub>2</sub> O <sub>3</sub> : 1.95 K <sub>2</sub> O:1.5 NH <sub>4</sub> F:175 H <sub>2</sub> O                                    | in fluoride media          | 2.5              | 2            |
| 5 SiO <sub>2</sub> :Al <sub>2</sub> O <sub>3</sub> : 3 KOH:0.75 NH <sub>4</sub> F:80 H <sub>2</sub> O                                                     | in fluoride media          | 2.26             | 3            |
| 6.02 SiO <sub>2</sub> : Al <sub>2</sub> O <sub>3</sub> : 8.23: Na <sub>2</sub> O: 656 H <sub>2</sub> O                                                    | add seeds                  | 1.6              | 4            |
| 5.18 SiO <sub>2</sub> : Al <sub>2</sub> O <sub>3</sub> : 0.17 Na <sub>2</sub> O:2.0 K <sub>2</sub> O: 224 H <sub>2</sub> O                                | rotating crystal<br>method | 2.2              | 5            |
| 3.70 SiO <sub>2</sub> : Al <sub>2</sub> O <sub>3</sub> : 0.095 Na <sub>2</sub> O: 8.03 K <sub>2</sub> O: 350 H <sub>2</sub> O                             | rotating crystal<br>method | 1.58             | 6            |
| 16 SiO <sub>2</sub> : 0.8 Al <sub>2</sub> O <sub>3</sub> : 9.5 Na <sub>2</sub> O: 0.85 K <sub>2</sub> O: 0.35 Cs <sub>2</sub> O:<br>125 H <sub>2</sub> O. | hydrothermal<br>synthesis  | 2.0              | 7            |
| 0.28 Al(OH) <sub>3</sub> : SiO <sub>2</sub> : 0.66 KOH: 0.01 Sr(NO <sub>3</sub> ) <sub>2</sub> : 20<br>H <sub>2</sub> O                                   | hydrothermal<br>synthesis  | 2.06             | 8            |
| 3.99 SiO <sub>2</sub> : Al <sub>2</sub> O <sub>3</sub> : 0.092 Na <sub>2</sub> O: 1.067 K <sub>2</sub> O: 171 H <sub>2</sub> O                            | One-pot method             | 2.06             | This<br>work |

| Materials                 | Initial concentration of Cs <sup>+</sup>                                               | Competing ions                                                                                                          | K <sub>d</sub> (mL/g)            | Ref.         |  |
|---------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--|
| KATS-2                    | 17.59 ppm                                                                              | Na*: 9669.63 ppm;<br>K*: 367.55 ppm;<br>Ca <sup>2+</sup> : 331.62 ppm;<br>Mg <sup>2+</sup> : 1109.93 ppm                | 3.28 × 10<br>3                   | 9            |  |
| K-RWY                     | 1 ppm                                                                                  | Na <sup>+</sup> : 40 ppm;<br>K <sup>+</sup> : 5 ppm;<br>Ca <sup>2+</sup> : 25 ppm;<br>Mg <sup>2+</sup> : 5 ppm          | 4.9×10 <sup>4</sup>              | 10           |  |
| K-RWY                     | K-RWY 1 ppm K*: 320 ppm;<br>Ca <sup>2+</sup> : 370 ppm;<br>Mg <sup>2+</sup> : 1100 ppm |                                                                                                                         | ~1.17×10 <sup>3</sup>            | 10           |  |
| NaMT1                     | 1.58 ppm                                                                               | Na <sup>+</sup> : 145 ppm;<br>K <sup>+</sup> : 230 ppm;<br>Ca <sup>2+</sup> : 25 ppm;                                   | 1.52×10 <sup>3</sup>             | 11           |  |
| K-MPS-1                   | -<br>31.42 ppm                                                                         | Na*: 20.41 ppm;<br>Rb*: 25.43 ppm;<br>Ca <sup>2+</sup> : 9.70 ppm;<br>Mg <sup>2+</sup> : 0.29 ppm;                      | <b>-</b><br>1.03×10 <sup>3</sup> | 12           |  |
| FJSM-SnS                  | 2.056 ppm                                                                              | Na*: 77 ppm;<br>K*: 6 ppm;<br>Ca <sup>2+</sup> : 8 ppm;<br>Mg <sup>2+</sup> : 8 ppm                                     | 215                              | 13           |  |
| MIL-101-SO <sub>3</sub> H | 229.50 ppm                                                                             | Na <sup>+</sup> : 2371 ppm;<br>K <sup>+</sup> : 3744 ppm;                                                               | 203.46                           | 14           |  |
| 10S-CHA                   | 18780 Bq/L<br>5.87 ppt                                                                 | Na <sup>+</sup> : 10000 ppm;<br>K <sup>+</sup> : 500 ppm;<br>Ca <sup>2+</sup> : 500 ppm;<br>Mg <sup>2+</sup> : 1500 ppm | 1.85×104                         | 15           |  |
| Na-CHA                    | -<br>1587.22 Bq/L<br>0.496 ppt                                                         | real nuclear<br>wastewater                                                                                              | –<br>2.17×10⁵                    | This<br>work |  |

**Table S2** Removal performance for  $Cs^+$  of Na-CHA zeolite and other adsorbents

| Materials                                     | <i>q<sub>m</sub></i> (mg/g) | Ref.      |
|-----------------------------------------------|-----------------------------|-----------|
| KMS-2                                         | 531.7                       | 16        |
| hf-TiFC                                       | 454.54                      | 17        |
| MIL-101-SO <sub>3</sub> H                     | 453                         | 14        |
| FJSM-SnS                                      | 408.91                      | 13        |
| KATS-2                                        | 358                         | 9         |
| KMS-1/r-GO                                    | 338.18                      | 18        |
| GP-CuFC                                       | 328.28                      | 19        |
| K-MPS-1                                       | 337.5                       | 12        |
| Zinc ferrocyanide                             | 372                         | 20        |
| K-RWY                                         | 310                         | 10        |
| NaMT1                                         | 290.7                       | 11        |
| $Na_2V_6O_{16}\bullet 3H_2O$                  | 285.735                     | 21        |
| KTS-3                                         | 280                         | 22        |
| Sulfonated Hyper-cross-linked polymer         | 273                         | 23        |
| Commercial CST (UOP)                          | 266                         | 24        |
| KMS-1                                         | 226                         | 25        |
| Zeolite A                                     | 207.47                      | 26        |
| FJSM-InMOF                                    | 198.63                      | 27        |
| K <sub>4</sub> Nb <sub>6</sub> O <sub>7</sub> | 166.125                     | 28        |
| FJSM-GAS-1                                    | 164                         | 29        |
| Cu-BTC/KNiFC                                  | 153                         | 30        |
| Hollow PB nanoparticles (190 nm)              | 131                         | 31        |
| Ca-Phl                                        | 91.7                        | 32        |
| AMP-PAN                                       | 81                          | 33        |
| Natural clinoptilolite                        | 168.9                       |           |
| Natural chabazite                             | 275.3                       | 34        |
| Natural mordenite                             | 256.7                       |           |
| Na-mordenite (MOR)                            | 222.1                       | 35        |
| Commercial NaX                                | 308                         |           |
| Na-CHA                                        | 442.48                      | This work |

Table S3 The maximum adsorption capacity  $(\mathsf{q}_m)$  for  $\mathsf{Cs}^*$  of various adsorbents.



**Fig. S1** (a) (c)Adsorption isotherms of Cs<sup>+</sup> adsorption in Na-CHA zeolite at 40 and 60 °C respectively, (b) (d) Linear fitting with the Langmuir model of Cs<sup>+</sup> adsorption in Na-CHA zeolite at 40 and 60 °C respectively.

Table.S4 Langmuir isotherm parameters for Cs<sup>+</sup> adsorption in Na-CHA zeolite at 40 and 60 °C.

| Langmuir isotherm |                |       | Langmuir isotherm |                |       |
|-------------------|----------------|-------|-------------------|----------------|-------|
| parameters        |                |       | parameters        |                |       |
| 40 °C             |                |       | _                 | 60 °C          |       |
| <b>D</b> 2        | Q <sub>m</sub> | b     | <b>D</b> 2        | Q <sub>m</sub> | b     |
| Λ                 | n- mg/g L/mg   | Λ     | mg/g              | L/mg           |       |
| 0.991             | 434.78         | 0.223 | 0.999             | 406.50         | 0.491 |



Fig. S2 Relationship between the adsorption amount of cesium and the release amount of sodium



Fig. S3 (a) SEM elemental mapping images of Na-CHA zeolite, and (b) Cs-loaded Na-CHA zeolite

## **References:**

- 1. T. Nishitoba, N. Yoshida, J. N. Kondo and T. Yokoi, Control of Al Distribution in the CHA-Type Aluminosilicate Zeolites and Its Impact on the Hydrothermal Stability and Catalytic Properties, *Ind. Eng. Chem. Res*, 2018, **57**, 3914-3922.
- B. Liu, Y. Zheng, N. Hu, T. Gui, Y. Li, F. Zhang, R. Zhou, X. Chen and H. Kita, Synthesis of low-silica CHA zeolite chabazite in fluoride media without organic structural directing agents and zeolites, *Microporous Mesoporous Mater.*, 2014, **196**, 270-276.
- X. Deng, P. Zhou, X. Yan, R. Xiong, H. Kou and W. Luo, Green synthesis of low-silica CHA zeolite without organic structural directing agents, fluoride media and seeds, *Microporous Mesoporous Mater.*, 2021, 310.
- 4. A. Vallace, G. C. Kester, C. Bongo, W. Casteel, G. Lau, R. Whitley and C. G. Coe, Improved gel synthesis enables routes to Al-rich chabazite, *Microporous Mesoporous Mater.*, 2021, **312**.
- J. Shang, G. Li, R. Singh, P. Xiao, J. Z. Liu and P. A. Webley, Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation, J. Phys. Chem. C, 2010, 114, 22025–22031.
- A. Vallace, G. Kester, W. Casteel, G. Lau, R. Whitley and C. Coe, A Study of Structural Defects in X- and Y-Type Zeolites and Their Effect on Their Transformation to Aluminum-Rich Chabazite, *J. Phys. Chem. C*, 2021, **125**, 12848-12856.
- M. Debost, P. B. Klar, N. Barrier, E. B. Clatworthy, J. Grand, F. Laine, P. Brazda, L. Palatinus, N. Nesterenko, P. Boullay and S. Mintova, Synthesis of Discrete CHA Zeolite Nanocrystals without Organic Templates for Selective CO<sub>2</sub> Capture, *Angew. Chem. Int. Ed.*, 2020, 59, 23491-23495.
- J. Yang, J. Liu, P. Liu, L. Li, X. Tang, H. Shang, J. Li and B. Chen, K-Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation, *Angew. Chem. Int. Ed.*, 2022, 61, e202116850.
- C. Yang and K. Cho, Rapid and selective removal of Cs<sup>+</sup> from water by layered potassium antimony thiostannate, J. Hazard. Mater., 2021, 403, 124105.
- H. Yang, M. Luo, L. Luo, H. Wang, D. Hu, J. Lin, X. Wang, Y. Wang, S. Wang, X. Bu, P. Feng and T. Wu, Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy, *Chem. Mater.*, 2016, 28, 8774-8780.
- Y. Kim, Y. K. Kim, J. H. Kim, M.-S. Yim, D. Harbottle and J. W. Lee, Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions, *Appl. Surf. Sci.*, 2018, **450**, 404-412.
- E. Rathore, P. Pal and K. Biswas, Reversible and Efficient Sequestration of Cesium from Water by the Layered Metal Thiophosphate K<sub>0.48</sub>Mn<sub>0.76</sub>PS<sub>3</sub>·H<sub>2</sub>O, *Chem. Eur. J.*, 2017, **23**, 11085-11092.
- X.-H. Qi, K.-Z. Du, M.-L. Feng, J.-R. Li, C.-F. Du, B. Zhang and X.-Y. Huang, A two-dimensionally microporous thiostannate with superior Cs<sup>+</sup> and Sr<sup>2+</sup> ion-exchange property, *J. Mater. Chem. A*, 2015, **3**, 5665-5673.
- 14. B. Aguila, D. Banerjee, Z. Nie, Y. Shin, S. Ma and P. K. Thallapally, Selective removal of cesium and strontium using porous frameworks from high level nuclear waste, *ChemComm*, 2016, **52**, 5940-5942.
- 15. Y. Hee Man, P. Chan Woo, K. Ilgook, Y. In-Ho and S. Youngho, Sulfur-modified chabazite as a low-cost ion exchanger for the highly selective and simultaneous removal of cesium and strontium, *Appl. Surf. Sci.*, 2021, **536**, 147776.
- J. L. Mertz, Z. H. Fard, C. D. Malliakas, M. J. Manos and M. G. Kanatzidis, Selective Removal of Cs<sup>+</sup>, Sr<sup>2+</sup>, and Ni<sup>2+</sup> by K<sub>2x</sub>Mg<sub>x</sub>Sn<sub>3-x</sub>S<sub>6</sub> (x = 0.5–1) (KMS-2) Relevant to Nuclear Waste Remediation, *Chem. Mater.*, 2013, **25**, 2116-2127.
- 17. H.-M. Yang, C. W. Park, I. Kim and I.-H. Yoon, Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water, *Chem. Eng. J.*, 2019, 123713.
- 18. K. Gupta, B. Yuan, C. Chen, N. Varnakavi and M.-L. Fu,  $K_{2x}Mn_xSn_{3-x}S_6$  (x = 0.5–0.95) (KMS-1) immobilized on the reduced graphene oxide as KMS-1/r-GO aerogel to effectively remove Cs<sup>+</sup> and Sr<sup>2+</sup> from aqueous solution, *Chem. Eng. J.*, 2019, **369**, 803-812.
- 19. R. I. Turgis, G. Arrachart, C. Delchet, C. Rey, Y. Barré, S. p. Pellet-Rostaing, Y. Guari, J. Larionova and A. s. Grandjean,

An original "click and bind" approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica, *Chem. Mater.*, 2013, **25**, 4447-4453.

- K. Shakir, M. Sohsah and M. Soliman, Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation, *Sep. Purif. Technol.*, 2007, 54, 373-381.
- S. Sarina, A. Bo, D. Liu, H. Liu, D. Yang, C. Zhou, N. Maes, S. Komarneni and H. Zhu, Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents, *Chem. Mater.*, 2014, 26, 4788-4795.
- 22. D. Sarma, C. D. Malliakas, K. S. Subrahmanyam, S. M. Islam and M. G. Kanatzidis, K<sub>2x</sub>Sn<sub>4-x</sub>S<sub>8-x</sub> (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs<sup>+</sup>, Sr<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> ions, *Chem. Sci.*, 2016, 7, 1121-1132.
- A. M. James, S. Harding, T. Robshaw, N. Bramall, M. D. Ogden and R. Dawson, Selective Environmental Remediation of Strontium and Cesium Using Sulfonated Hyper-Cross-Linked Polymers (SHCPs), ACS Appl. Mater. Interfaces, 2019, 11, 22464-22473.
- 24. S. Chitra, S. Viswanathan, S. V. S. Rao and P. K. Sinha, Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes, *J RADIOANAL NUCL CH*, 2010, **287**, 955-960.
- M. J. Manos and M. G. Kanatzidis, Highly Efficient and Rapid Cs<sup>+</sup> Uptake by the Layered Metal Sulfide K<sub>2x</sub>Mn<sub>x</sub>Sn<sub>3-x</sub>S<sub>6</sub> (KMS-1), J. Am. Chem. Soc., 2009, **131**, 6599-6607.
- A. El-Kamash, Evaluation of zeolite A for the sorptive removal of Cs<sup>+</sup> and Sr<sup>2+</sup> ions from aqueous solutions using batch and fixed bed column operations, *J. Hazard. Mater.*, 2008, **151**, 432-445.
- Y.-J. Gao, M.-L. Feng, B. Zhang, Z.-F. Wu, Y. Song and X.-Y. Huang, An easily synthesized microporous framework material for the selective capture of radioactive Cs<sup>+</sup> and Sr<sup>2+</sup> ions, *J. Mater. Chem. A*, 2018, **6**, 3967-3976.
- 28. J. Sun, D. Yang, C. Sun, L. Liu, S. Yang, Y. A. Jia, R. Cai and X. Yao, Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water, *Sci. Rep.*, 2014, **4**, 7313.
- M.-L. Feng, D. Sarma, Y.-J. Gao, X.-H. Qi, W.-A. Li, X.-Y. Huang and M. G. Kanatzidis, Efficient removal of [UO<sub>2</sub>]<sup>2+</sup>, Cs<sup>+</sup>, and Sr<sup>2+</sup> ions by radiation-resistant gallium thioantimonates, *J. Am. Chem. Soc.*, 2018, **140**, 11133-11140.
- S. Naeimi and H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs<sup>+</sup> from aqueous solution, *Sep. Purif. Technol.*, 2017, 175, 255-265.
- N. L. Torad, M. Hu, M. Imura, M. Naito and Y. Yamauchi, Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas, *J. Mater. Chem.*, 2012, 22, 18261.
- 32. K. Tamura, T. Kogure, Y. Watanabe, C. Nagai and H. Yamada, Uptake of cesium and strontium ions by artificially altered phlogopite, *Environ. Sci. Technol.*, 2014, **48**, 5808-5815.
- 33. Y. Park, Y.-C. Lee, W. S. Shin and S.-J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN), *Chem. Eng. J.*, 2010, **162**, 685-695.
- 34. E. H. Borai, R. Harjula, L. Malinen and A. Paajanen, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, *J. Hazard. Mater.*, 2009, **172**, 416-422.
- E. Han, Y.-G. Kim, H.-M. Yang, I.-H. Yoon and M. Choi, Synergy between Zeolite Framework and Encapsulated Sulfur for Enhanced Ion-Exchange Selectivity to Radioactive Cesium, *Chem. Mater.*, 2018, **30**, 5777-5785.