Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

ESI

LaAeAl₃S₇ (Ae = Ca, Sr): Cairo Pentagonal Layered thioaluminates

Achieving Well-balance between Strong Second Harmonic Generation

Response and Wide Bandgap

Jingjing Xu,^b Kui Wu,^{a,*} Bingbing Zhang,^b Haohai Yu,^{a,*} Huaijin Zhang^{a,*}

^a State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, China

^b College of Chemistry and Environmental Science, Hebei University, Baoding, China

E-mail: wukui@sdu.edu.cn; haohaiyu@sdu.edu.cn; huaijinzhang@sdu.edu.cn;

CONTENTS

- 1. Tables
- 2. Figures
- 3. References

1. Tables

Table S1. Dimensional distribution of AlS₄ units in the known thioaluminates.

Table S2. Comparison of the SHG effects and band gaps among LaAeAl₃S₇ and other reported NLO rare-earth chalcogenides.

Table S3. Crystal data and structure refinement for LaAeAl₃S₇.

Table S4. Comparison of the distortion degrees $(\Delta d/\%)$ of AeS₈/(La/Ae)S₈ units among LaAeAl₃S₇ and AeAl₂S₄.

Compound	Space	Unit	Dimensionality	
1	group			
$(Ag_{0.8}Cu_{3.2})Al_4S_8$	I-42d	AlS_4	3D	
$(Ag_{3.6}Cu_{0.4})Al_4S_8$	I-42d	AlS ₄	3D	
Ln ₃ AlMS ₇ (Ln=Y, Lanthanide series;	DC	A 1C	0D	
M=Fe, Co, Ni, Zn, Mn, Cr, V, Ti)	<i>P</i> 03	A154	0D	
Ba_2AlSbS_5	Pnma	AlS ₄	0D	
LiBa ₂ AlS ₄	$P2_1/m$	AlS_4	0D	
$Na_{0.80}Ba_{0.80}(A1S_3)_{0.80}$	Pnma	AlS_4	0D	
$(Al_{0.973}Li_{3.126})S_3$	C2/c	AlS_4	0D	
$Al(V_4S_8)$	<i>F</i> -43 <i>m</i>	AlS_4	0D	
Ag ₉ AlS ₆	<i>F</i> -43 <i>m</i>	AlS ₄	0D	
$Al_{0.55}Mo_2S_4$	F-43 <i>m</i>	AlS_4	0D	
$AlMo_4S_8$	F-43 <i>m</i>	AlS_4	0D	
$Al_{0.75}Mo_2S_4$	<i>F</i> -43 <i>m</i>	AlS_4	0D	
Al(PS ₄)	<i>I</i> 222	AlS_4	0D	
AlMo ₄ S ₈	R3mR	AlS_4	0D	
Na ₅ (AlS ₄)	Pbca	AlS_4	0D	
$TaS_2Al_{0.33}$	P6 ₃ /mmc	AlS ₄	0D	
Na ₃ AlS ₃	$P2_{1}/n$	AlS_4	0D	
AlLi ₅ S ₄	$P2_1/m$	AlS_4	0D	
$Na_6Al_2S_6$	$P2_{1}/c$	AlS_4	0D	
$Rb_4(Al_2S_5)$	$Pna2_1$	AlS_4	1D	
MAl ₂ S ₄ (M=Eu, Pb, Sr)	Cccm	AlS_4	1D	
$Bi_2(Al_4S_8)$	P4/nncZ	AlS_4	1D	
TlAlS ₂	C2/c	AlS ₄	2D	

Table S1. Dimensional distribution of AlS₄ units in the known thioaluminates.

ZnAl ₂ S ₄	Pna2 ₁	AlS ₄	2D
$FeAl_2S_4$	R3mH	AlS ₄	2D
$MnAl_2S_4$	R3mH	AlS ₄	2D
AeAl ₂ S ₄ (Ae=Ca, Sr)	Fddd	AlS ₄	2D
$Tl_3Al_{13}S_{21}$	<i>C</i> 1 <i>m</i> 1	AlS ₄	3D
CuAlS ₂	I-42d	AlS ₄	3D
$CdAl_2S_4$	<i>I</i> -4	AlS ₄	3D
$HgAl_2S_4$	<i>I</i> -4	AlS ₄	3D
$Tl_3(Al_7S_{12})$	$P2_1$	AlS ₄	3D
AlInS ₃	$P6_1$	AlS ₄	3D
$BaAl_4S_7$	$Pmn2_1$	AlS ₄	3D
Ln ₆ Al _{3.3} S ₁₄ (Ln=Y, Lanthanide series)	P6 ₃	$AlS_6; AlS_4$	AlS ₆ 1D; AlS ₄ 0D

Table S2. Comparison of the SHG effect and band gap among $LaAeAl_3S_7$ and other reported NLO rare-earth chalcogenides.

Number Commound		$\mathbf{E}_{\mathbf{v}}(\mathbf{W})$	SHG	References
Number	Compound	$E_g(ev)$	(×AgGaS ₂)	
1	La ₂ CuSbS ₅	2.06	0.5	S 1
2	Sm ₄ InSbS ₉	2.13	0.75	S2
3	$ZnY_8Si_2S_{14}$	2.38	0.84	S3
4	Gd_4GaSbS_9	2.41	0.8	S2
5	Dy_3GaS_6	2.81	0.084	S4
6	Y ₃ GaS ₆	2.88	0.21	S4
7	La ₃ LiGeS ₇	3.02	0.7	S5
8	KYGeS ₄	3.15	1	S 6
9	La4InSbS9	2.07	1.5	S 7
10	EuHgSnS ₄	2.14	1.77	S 8
11	$La_8Sb_2S_{15}$	2.3	1.2	S9
12	La_3LiSnS_7	2.4	1.2	S5
13	$La_6In_2GeS_{14}$	2.61	1.8	S10
14	$Ba_4Sm_2Cd_3S_{10}$	2.77	1.8	S11
15	LiSm ₃ SiS ₇	2.83	1.5	S5
16	$LaSrGa_3S_7$	2.92	1.3	S12
17	LaCaGa ₃ S ₇	2.96	1.3	S12
18	EuCdGeS ₄	2.5	2.6	S13
19	Sm ₄ GaSbS ₉	2.23	3.8	S14
20	$La_6Ga_2GeS_{14}$	2.54	4.8	S10

21	CsLaGeS ₄	3.6	0.18	S15
22	LaCaAl ₃ S ₇	3.76	0.8	this work
23	LaSrAl ₃ S ₇	3.78	1.1	this work

Table S3. Crystal data and structure refinement for $LaAeAl_3S_7$.

Empirical formula	LaCaAl ₃ S ₇	LaSrAl ₃ S ₇
Formula weight	484.35	531.89
crystal system	Tetragonal	
space group	$P-42_1m$	
<i>a</i> (Å)	9.4861(16)	9.5854(16)
<i>c</i> (Å)	6.1824(13)	6.2319(18)
Z, $V(Å^3)$	2, 556.3(2)	2, 572.6(3)
$D_c (g/cm^3)$	2.891	3.085
$\mu (\mathrm{mm}^{-1})$	5.788	9.784
GOF on F ²	1.063	1.059
$R_1, wR_2 (\mathrm{I} \ge 2\sigma(\mathrm{I}))^a$	0.0399, 0.0941	0.0202, 0.0369
R_1 , wR_2 (all data)	0.0442, 0.0968	0.0234, 0.0375
Flack parameter	-0.04(3)	0.039(14)
Largest diff. peak and hole (e Å ⁻³)	1.463, -1.009	0.672, -0.320

Table S4. Comparison on the distortion degrees $(\Delta d/\%)$ of AeS₈/(La/Ae)S₈ units among LaAeAl₃S₇ and AeAl₂S₄.

Compound	(La/Ae)S ₈ /AeS ₈	$(La/Ae)S_8/AeS_8 (\Delta d/\%)$
LaCaAl ₃ S ₇	(La/Ca)S ₈	2.763
$LaSrAl_3S_7$	$(La/Sr)S_8$	3.062
	Ca1S ₈	0.0007
$CaAl_2S_4$ (<i>Fddd</i>)	$Ca2S_8$	0.0024
	Ca3S ₈	0.140
	$Sr1S_8$	0.030
$SrAl_2S_4$ (<i>Fddd</i>)	$Sr2S_8$	0.071
	$Sr3S_8$	0.092
$SrAl_2S_4$ (<i>Cccm</i>)	SrS_8	0.0073

2. Figures

Fig. S1. Experimental XRD patterns for (a) LaCaAl₃S₇ and (b) LaSrAl₃S₇.

Fig. S2. (a) Crystal structure of $Bi_2(Al_4S_8)$ along the *c*-axis; (b) 1D chain is composed of AlS₄ units in $Bi_2(Al_4S_8)$; (c) Crystal structure of Rb₄(Al₂S₅) along the *a*-axis; (d) 1D chain is composed of AlS₄ units in Rb₄(Al₂S₅); (e) Crystal structure of SrAl₂S₄ along the *a*-axis; (f) 1D chain is composed of AlS₄ units in SrAl₂S₄.

Fig. S3. (a) Crystal structure of $Dy_6Al_{3,3}S_{14}$ along the *c*-axis; (b) 1D chain is composed of AlS_6 units in $Dy_6Al_{3,3}S_{14}$; (c) Crystal structure of $BaAl_4S_7$ along the *c*-axis.

References

- S1. H. Lin, Y. Li, M. Li, Z. Ma, L. Wu, X. Wu and Q. Zhu, Centric-to-acentric structure transformation induced by a stereochemically active lone pair: a new insight for design of IR nonlinear optical materials. J. Mater. Chem. C, 2019, 7, 4638-4643.
- S2. H. Zhao, Synthesis, crystal structure, and NLO property of the chiral sulfide Sm₄InSbS₉. Z. *Anorg. Allg. Chem.*, 2016, **642**, 56-59.
- S3. S.-P. Guo, G.-C. Guo, M.-S. Wang, J.-P. Zou, G. Xu, G.-J. Wang, X.-F. Long and J.-S. Huang, A Series of New Infrared NLO Semiconductors, ZnY₆Si₂S₁₄, Al_xDy₃(Si_yAl_{1-y})S₇, and Al_{0.33}Sm₃SiS₇, *Inorg. chem.*, 2009, **48**, 7059-7065.
- S4. M. J. Zhang, B. X. Li, B. W. Liu, Y. H. Fan, X. G. Li, H. Y. Zeng and G. C. Guo, Ln₃GaS₆ (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds, *Dalton Trans.*, 2013, 42, 14223-14229.
- S5. Y. Yang, Y. Chu, B. Zhang, K. Wu and S. Pan, Unique Unilateral-Chelated Mode-Induced d–p–π Interaction Enhances Second-Harmonic Generation Response in New Ln₃LiMS₇ Family, *Chem. Mater.*, 2021, **33**, 4225-4230.
- S6. D. Mei, W. Cao, N. Wang, X. Jiang, J. Zhao, W. Wang, J. Dang, S. Zhang, Y. Wu, P. Rao and Z. Lin, Breaking through the "3.0 eV wall" of energy band gap in mid-infrared nonlinear optical rare earth chalcogenides by charge-transfer engineering, *Mater. Horiz.*, 2021, 8, 2330-2334.
- S7. H. J. Zhao, Y. F. Zhang and L. Chen, Strong Kleinman-forbidden second harmonic generation in chiral sulfide: La₄InSbS₉, J. Am. Chem. Soc., 2012, **134**, 1993-1995.
- S8. W. Xing, C. Tang, N. Wang, C. Li, Z. Li, J. Wu, Z. Lin, J. Yao, W. Yin and B. Kang, EuHgGeSe₄ and EuHgSnS₄: Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses, *Inorg. Chem.*, 2020, 59, 18452-18460.
- S9. H. J. Zhao and L. J. Zhou, A Series of Noncentrosymmetric Antimony Sulfides Ln₈Sb₂S₁₅(Ln = La, Pr, Nd) – Syntheses, Crystal and Electronic Structures, and NLO Properties, *Eur. J. Inorg. Chem.*, 2015, **2015**, 964-968.
- S10. Y.-F. Shi, Y.-k. Chen, M.-C. Chen, L.-M. Wu, H. Lin, L.-J. Zhou and L. Chen, Strongest Second Harmonic Generation in the Polar R₃MTQ₇ Family: Atomic Distribution Induced Nonlinear Optical Cooperation, *Chem. Mater.*, 2015, 27, 1876-1884.
- S11. Q. G. Yue, S. H. Zhou, B. Li, X. T. Wu, H. Lin and Q. L. Zhu, Quaternary Noncentrosymmetric Rare-Earth Sulfides Ba₄RE₂Cd₃S₁₀ (RE = Sm, Gd, or Tb): A Joint Experimental and Theoretical Investigation, *Inorg. Chem.*, 2022, **61**, 1797-1804.
- S12. J. Xu, K. Wu, Y. Xiao, B. Zhang, H. Yu and H. Zhang, Mixed-Anion-Oriented Design of LnMGa₃S₆O (Ln = La, Pr, and Nd; M = Ca and Sr) Nonlinear Optical Oxysulfides with Targeted Property Balance, ACS Appl. Mater. Inter., 2022, 14, 37967-37974
- S13. W. Xing, N. Wang, Y. Guo, Z. Li, J. Tang, K. Kang, W. Yin, Z. Lin, J. Yao and B. Kang, Two rare-earth-based quaternary chalcogenides EuCdGeQ₄ (Q = S, Se) with strong secondharmonic generation, *Dalton Trans.*, 2019, 48, 17620-17625.
- S14. M.-C. Chen, L.-H. Li, Y.-B. Chen and L. Chen, In-phase alignments of asymmetric building units in Ln₄GaSbS₉ (Ln= Pr, Nd, Sm, Gd- Ho) and their strong nonlinear optical responses in middle IR, J. Am. Chem. Soc., 2011, 133, 4617-4624.

S15. M. Usman, M. D. Smith, G. Morrison, V. V. Klepov, W. Zhang, P. S. Halasyamani and H. C. Zur Loye, Molten Alkali Halide Flux Growth of an Extensive Family of Noncentrosymmetric Rare Earth Sulfides: Structure and Magnetic and Optical (SHG) Properties, *Inorg. Chem.*, 2019, **58**, 8541-8550.