# Introducing Anthracene and amino groups into Ln-OFs Photo-reduction of Cr(VI) Without Additional Photosensitizers and Cocatalysts

Wenxiao Guo, <sup>a‡</sup> Shufang Wang, <sup>a‡</sup> Hongguo Hao, <sup>a\*</sup> Xiangjin Kong, <sup>a</sup> Hui Yan, <sup>a</sup> Hongjie Zhu, <sup>a</sup> YunWu Li, <sup>a</sup> Huawei Zhou, <sup>a</sup> Dichang Zhong, <sup>b\*</sup> Fangna Dai <sup>c</sup> <sup>a</sup>Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China.

<sup>b</sup>Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384, China.

<sup>c</sup>College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

‡ Wenxiao Guo and Shufang Wang contributed equally to this work.

\* Corresponding Authors, E-mail: <u>hhg207@126.com; dczhong@email.tjut.edu.cn</u>

## **Supplementary Information**

## Contents

| 1. Experimental Section                                         | 3 |
|-----------------------------------------------------------------|---|
| 2. Crystal structure and IR and PXRD of LCUH-100                | 5 |
| 3. Photocatalytic Cr(VI) reduction properties characterization. | 8 |

#### **1. Experimental Section**

**1.1 Materials and Methods.** All reagents and solvents were obtained commercially and used without any purification. Crystal data were obtained from a Rigaku Oxford Diffraction Gemini diffractometer, equipped with a Mo  $K\alpha$  with  $\omega$ -scan technique. The powder X-ray diffraction patterns (PXRD) were recorded on a Rigaku D/Max-2500 diffractometer and the intensity data were recorded by continuous scan in a  $2\theta$ mode from 5 to 50°, with a step size of 0.1 and a scan speed of 20 min<sup>-1</sup>. A PerkinElmer Diamond SII thermal analyzer was utilized for Thermo gravimetric analysis (TGA) tests from 298 to 1073 K, at a heating rate of 10 K min<sup>-1</sup> under a nitrogen atmosphere. Infrared spectra were recorded on a Nicolet 6700 FT-IR spectrophotometer with KBr pellets in the range 4000-400 cm<sup>-1</sup> region. X-ray photoelectron spectrums (XPS) characterization was carried out by using a Thermo Fisher Scientific ESCALAB spectrometer with Al Ka X-rays (1486.6 eV) as the light source. UV-visible spectroscopy measurements were conducted with a UH 4150 spectrophotometer. Electron Paramagnetic Resonance Spectrometer (EPR) was conducted on a EPR-200Plus spectrometer. The diffuse reflectance spectra of all the materials were explored by a UV-vis spectrophotometer (Shimadzu UV-3600, Japan) with BaSO<sub>4</sub> as a comparison. The Mott-Schottky curves were obtained at a GAMRY references 3000 electrochemical workstation. Photocurrent measurements were performed on a workstation (CHI760E) in a standard three-electrode system configuration with the photocatalyst-coated ITO as the working electrode, Pt net as the counter electrode, and Ag/AgCl as the reference electrode. Photocatalytic reactions were performed on a CEAULIGHT photochemical reactor (CEL-LB70). The Electrochemical Impedance Spectroscopy were carried out using Gamry references 3000 electrochemical workstations, equipped with an electrode rotator (Pine, RDE710). Photoluminescence (PL) emission measurements were conducted using a fluorescence spectrophotometer (Hitachi F-7000, Japan). The time-resolved photoluminescence (TRPL) spectra were measured using an Edinburgh FLS 1000 spectrophotometer. Element distribution was characterized by Hitachi SEM S-4800. Energy-dispersive X-

ray spectroscopy (EDS) and element mapping analyses were recorded on a Thermo Fisher Scientific FIB-SEM GX4. The transmission electron microscopy (TEM) observation was performed on a Jem-2100F electron microscope operating.

### 2. Crystal structure and IR and PXRD of LCUH-100

| Complex                               | LCUH-100                                             |
|---------------------------------------|------------------------------------------------------|
| CCDC no.                              | 2170346                                              |
| Empirical formula                     | $[Sm_4C_{146}N_8O_{30} H_{116}][C_4H_9NO]_3[H_2O]_8$ |
| Formula weight                        | 3469.22                                              |
| Temperature/K                         | 298.15                                               |
| Crystal system                        | triclinic                                            |
| Space group                           | <i>P</i> -1                                          |
| $a/\text{\AA}$                        | 19.3340(18)                                          |
| $b/\text{\AA}$                        | 20.3749(19)                                          |
| $c/{ m \AA}$                          | 22.104(2)                                            |
| $\alpha/^{\circ}$                     | 90.7600(10)                                          |
| $eta/^{\circ}$                        | 93.8540(10)                                          |
| γ/°                                   | 114.234(3)                                           |
| Volume/Å <sup>3</sup>                 | 7914.2(13)                                           |
| Z                                     | 2                                                    |
| $ ho { m g/cm^3}$                     | 1.395                                                |
| $\mu/\mathrm{mm}^{-1}$                | 1.536                                                |
| F(000)                                | 3358                                                 |
| Crystal size/mm <sup>3</sup>          | 0.3 	imes 0.2 	imes 0.1                              |
| Radiation                             | Mo <i>K</i> $\alpha$ ( $\lambda$ = 0.71073)          |
| $2\theta$ range for data collection/° | 4.232 to 56.926                                      |
| Reflections collected                 | 51414                                                |
| R <sub>int</sub>                      | 0.0896                                               |
| Goodness of fit                       | 0.966                                                |

#### Table S1. Crystal Parameters for LCUH-100.

**Computer programs:** *CrysAlis PRO*, Agilent Technologies, *SHELXL*2018 (Sheldrick, 2018), *DIAMOND* (Brandenburg & Putz, 2005) *and publCIF* (Westrip, 2010).

Table S2. Selected Bond Lengths (Å) of LCUH-100.

| LCUH-100             |           |                      |           |                       |          |                       |           |
|----------------------|-----------|----------------------|-----------|-----------------------|----------|-----------------------|-----------|
| Atom- Atom           | Length/Å  | Atom- Atom           | Length/Å  | Atom- Atom            | Length/Å | Atom- Atom            | Length/Å  |
| Sm1-O1               | 2.568(8)  | Sm2-O3               | 2.405(8)  | Sm3- O13 <sup>3</sup> | 2.351(7) | Sm4- O12 <sup>3</sup> | 2.425(8)  |
| Sm1-O2               | 2.407(10) | Sm2-O6               | 2.455(8)  | Sm3- O14 <sup>2</sup> | 2.410(8) | Sm4-O19               | 2.416(8)  |
| Sm1-O3               | 2.739(8)  | Sm2-O7               | 2.462(8)  | Sm3- O15 <sup>2</sup> | 2.430(7) | Sm4-O20               | 2.859(8)  |
| Sm1-O4               | 2.361(8)  | Sm2-O9               | 2.915(9)  | Sm3-O16               | 2.511(8) | Sm4-O21               | 2.483(8)  |
| Sm1-O5               | 2.318(8)  | Sm2-O8               | 2.364(11) | Sm3-O17               | 2.433(8) | Sm4-O27               | 2.373(9)  |
| Sm1-O8               | 2.340(8)  | Sm2-O10              | 2.505(11) | Sm3-O18               | 2.393(7) | Sm4-O26               | 2.525(10) |
| Sm1-O24 <sup>1</sup> | 2.437(8)  | Sm2-O11              | 2.463(9)  | Sm3-O19               | 2.702(7) | Sm4-O28               | 2.499(7)  |
| Sm1-O25 <sup>1</sup> | 2.461(8)  | Sm2-O22 <sup>2</sup> | 2.493(8)  | Sm3- O20              | 2.357(8) | Sm4-O321              | 2.494(8)  |

**Symmetry codes for LCUH-100:** <sup>1</sup>1-X, 1-Y, 1-Z; <sup>2</sup>1-X, 2-Y, 1-Z; <sup>3</sup>+X, +Y, 1+Z;

| LCUH-100                               |          |                          |          |                                        |          |                                        |         |
|----------------------------------------|----------|--------------------------|----------|----------------------------------------|----------|----------------------------------------|---------|
| Atom-Atom-Atom                         | Angle/°  | Atom-Atom-Atom           | Angle/°  | Atom-Atom-Atom                         | Angle/°  | Atom-Atom-Atom                         | Angle/  |
| O1-Sm1-O3                              | 113.9(3) | O3-Sm2-O6                | 84.3(3)  | O13 <sup>3</sup> -Sm3-O14 <sup>2</sup> | 84.5(3)  | O12 <sup>3</sup> -Sm4-O20              | 67.9(3) |
| O2-Sm1-O1                              | 51.3(3)  | O3-Sm2-O7                | 117.5(3) | O13 <sup>3</sup> -Sm3-O15 <sup>2</sup> | 83.0(3)  | O12 <sup>3</sup> -Sm4-O21              | 83.4(3) |
| O2-Sm1-O3                              | 69.4(3)  | O3-Sm2-O8                | 71.4(2)  | O13 <sup>3</sup> -Sm3-O16              | 165.4(3) | O12 <sup>3</sup> -Sm4-O27              | 70.2(3) |
| O2-Sm1-O241                            | 125.8(3) | O3-Sm2-O10               | 150.6(4) | O13 <sup>3</sup> -Sm3-O17              | 142.5(3) | O12 <sup>3</sup> -Sm4-O28              | 131.6(3 |
| O2-Sm1-O251                            | 133.4(3) | O3-Sm2-O11               | 74.3(3)  | O13 <sup>3</sup> -Sm3-O18              | 81.6(3)  | O12 <sup>3</sup> -Sm4-O32 <sup>1</sup> | 141.4(3 |
| 04-Sm1-01                              | 95.4(3)  | O3-Sm2-O22 <sup>2</sup>  | 134.4(3) | O13 <sup>3</sup> -Sm3-O19              | 72.9(2)  | O12 <sup>3</sup> -Sm4-O33 <sup>1</sup> | 147.4(3 |
| O4-Sm1-O2                              | 87.3(3)  | O3-Sm2-O23 <sup>2</sup>  | 86.5(3)  | O13 <sup>3</sup> -Sm3-O20              | 78.6(3)  | O19-Sm4-O12 <sup>3</sup>               | 80.7(3) |
| O4-Sm1-O3                              | 51.6(3)  | O6-Sm2-O7                | 81.2(3)  | O14 <sup>2</sup> -Sm3-O15 <sup>2</sup> | 54.8(3)  | O19-Sm4-O20                            | 71.9(2) |
| O4-Sm1-O241                            | 136.3(3) | O6-Sm2-O8                | 67.8(3)  | O14 <sup>2</sup> -Sm3-O16              | 87.7(3)  | O19-Sm4-O21                            | 118.6(3 |
| O4-Sm1-O251                            | 84.0(3)  | O6-Sm2-O10               | 70.2(3)  | O14 <sup>2</sup> -Sm3-O17              | 123.4(3) | O19-Sm4-O27                            | 148.0(3 |
| 05-Sm1-O1                              | 171.2(3) | O6-Sm2-O11               | 134.1(3) | O14 <sup>2</sup> -Sm3-O19              | 154.8(3) | O19-Sm4-O28                            | 74.7(3) |
| O5-Sm1-O2                              | 137.1(3) | O6-Sm2-O22 <sup>2</sup>  | 140.3(3) | O15 <sup>2</sup> -Sm3-O16              | 82.4(3)  | O19-Sm4-O321                           | 136.3(3 |
| O5-Sm1-O3                              | 72.1(3)  | O6-Sm2-O23 <sup>2</sup>  | 145.2(3) | O15 <sup>2</sup> -Sm3-O17              | 132.5(3) | O19-Sm4-O331                           | 85.9(3) |
| O5-Sm1-O4                              | 83.2(3)  | O7-Sm2-O8                | 46.8(2)  | O15 <sup>2</sup> -Sm3-O19              | 130.5(2) | O21-Sm4-O20                            | 47.2(2  |
| O5-Sm1-O8                              | 77.4(3)  | O7-Sm2-O10               | 73.9(3)  | O16-Sm3-O19                            | 116.7(3) | O21-Sm4-O27                            | 71.9(3  |
| O5-Sm1-O241                            | 87.4(3)  | O7-Sm2-O11               | 73.9(3)  | O17-Sm3-O16                            | 51.4(3)  | O21-Sm4-O28                            | 73.3(3  |
| O5-Sm1-O251                            | 87.1(3)  | O7-Sm2-O22 <sup>2</sup>  | 85.7(3)  | O17-Sm3-O19                            | 73.4(3)  | O21-Sm4-O321                           | 85.3(3  |
| 08-Sm1-01                              | 110.0(3) | O7-Sm2-O23 <sup>2</sup>  | 132.3(3) | O18-Sm3-O14 <sup>2</sup>               | 137.2(3) | O21-Sm4-O331                           | 128.9(3 |
| O8-Sm1-O2                              | 75.5(3)  | O9-Sm2-O3                | 81.6(3)  | O18-Sm3-O15 <sup>2</sup>               | 83.4(3)  | O26-Sm4-O12 <sup>3</sup>               | 74.6(3  |
| O8-Sm1-O3                              | 75.7(3)  | O9-Sm2-O6                | 72.6(4)  | O18-Sm3-O16                            | 95.9(3)  | O26-Sm4-O19                            | 83.5(3) |
| 08-Sm1-04                              | 127.2(3) | O9-Sm2-O7                | 146.0(3) | O18-Sm3-O17                            | 90.0(3)  | O26-Sm4-O20                            | 137.7(3 |
| <b>O8-Sm1-O24</b> <sup>1</sup>         | 91.6(3)  | O9-Sm2-O8                | 133.6(4) | O18-Sm3-O19                            | 51.3(2)  | O26-Sm4-O21                            | 145.9(3 |
| O8-Sm1-O251                            | 142.0(3) | O9-Sm2-O10               | 77.0(4)  | O20-Sm3-O14 <sup>2</sup>               | 89.0(3)  | O26-Sm4-O27                            | 76.3(4  |
| O24 <sup>1</sup> -Sm1-O1               | 87.6(3)  | O9-Sm2-O11               | 140.1(4) | O20-Sm3-O15 <sup>2</sup>               | 140.8(3) | O26-Sm4-O28                            | 140.4(3 |
| O24 <sup>1</sup> -Sm1-O3               | 157.6(3) | O9-Sm2-O22 <sup>2</sup>  | 100.7(4) | O20-Sm3-O16                            | 113.7(3) | O26-Sm4-O32 <sup>1</sup>               | 95.8(3  |
| O24 <sup>1</sup> -Sm1-O25 <sup>1</sup> | 52.8(2)  | O9-Sm2-O23 <sup>2</sup>  | 72.8(4)  | O20-Sm3-O17                            | 77.6(3)  | O26-Sm4-O331                           | 74.5(3) |
| O251-Sm1-O1                            | 84.1(3)  | O10-Sm2-O8               | 110.0(3) | O20-Sm3-O18                            | 126.9(3) | O27-Sm4-O20                            | 107.4(3 |
| O25 <sup>1</sup> -Sm1-O3               | 132.0(3) | O10-Sm2-O23 <sup>2</sup> | 105.9(4) | O20-Sm3-O19                            | 75.8(2)  | O28-Sm4-O20                            | 65.2(2) |

Table S3. Selected bond angles (°) for LCUH-100.

| Table S4. | Calculated | solvent-accessible | volume (Å <sup>3</sup> ) | and | Unit | volume | (Å <sup>3</sup> ) | by |
|-----------|------------|--------------------|--------------------------|-----|------|--------|-------------------|----|
| PLATON.   |            |                    |                          |     |      |        |                   |    |

| MOF                                         | LCUH-100 |
|---------------------------------------------|----------|
| Solvent accessible volume (Å3)              | 2043.2   |
| Solvent accessible volume (A <sup>2</sup> ) | (25.8%)  |
| Unit volume (Å <sup>3</sup> )               | 7914.1   |



Figure S1. The FT-IR spectral of LCUH-100.



Figure S2. The variable temperature powder test (25°C to 325°C) of LCUH-100.

#### 3. Photocatalytic Cr(VI) reduction properties characterization.



Table S5. Energy band calculation of LCUH-100

Figure S3. The Steady-state PL spectra of H<sub>2</sub>AAPA and LCUH-100.



**Figure S4.** The PXRD patterns (a) IR spectra (b) and XPS spectra (c) before and after 5 cycles of Cr (VI) reduction of **LCUH-100**.



Figure S5. Zeta potentials of LCUH-100 at different pH values.