Supporting Information

Synthesis of Co₉S₈ nanoflakes by one-step solvent-free solid-state method for multiple electrocatalytic reactions

Peifeng Yu^a, Lingyong Zeng^a, Kuan Li^a, Chao Zhang^a, Kangwang Wang^a, Longfu Li^a,

Ying Liang^b, Kai Yan^c, Huixia Luo^{a*}

^a School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite & Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510275, P. R. China

^b Basic course department, Guangzhou Maritime University, Guangzhou 510725, P. R. China

^c School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

* Corresponding author, E-mail: luohx7@mail.sysu.edu.cn

Experimental section

Chemicals: Cobalt power was purchased from Alfa Aesar. RuO₂ (99.9% metals basis), Sulfur power (99.99% metals basis), and CoCl • $6H_2O$ (AR) were purchased from Aladdin. Urea (AR, 99%), Pt/C (20%), and Na₂S • $9H_2O$ (AR, $\geq 98.0\%$) were obtained from Shanghai Macklin Biochemical Co., Ltd. Commercial active carbon YP-50 was obtained from Toray.

Turnover frequency (TOF) calculation: The per-site TOF values were calculated based on the following equation:

 $TOF = \frac{\text{total hydrogen turnover / cm}^2 \text{ geometric area}}{\text{number of active sites / cm}^2 \text{ geometric area}}$

The total number of hydrogen turnovers was calculated from the current density according to the:

no. of H₂ =
$$\mathbb{E}j \frac{mA}{cm^2} \mathbb{E} \frac{1 C s^{-1}}{1000 mA} \mathbb{E} \frac{1 mol e^{-1}}{96485.3 C} \mathbb{E} \frac{1 mol H_2}{2 mol e^{-1}} \mathbb{E} \frac{6.02 \times 10^{23} molecules H_2}{1 mol H_2} \mathbb{E} = 3.12 \times 10^{15} \frac{H_2 s^{-1}}{cm^2} per \frac{mA}{cm^2}$$

Considering that it was difficult to determine the exact quantity of active sites on the catalyst surface, the total number of surface Co sites was assumed as the number of active sites according to the reference. The molar volume of Co was obtained by the equation of the molar mass of Co divided by the density of Co, and thus the molar volume of Co is determined to be 6.62 cm³ mol⁻¹. The average surface atoms per 1 square centimeter could be required by the following equation^[1]:

surface sites=
$$\mathbb{P} \frac{1 \times 6.02 \times 10^{23} \text{ atoms}}{1 \text{ mol}} \times \frac{1 \text{ mol}}{6.62 \text{ cm}^3} \mathbb{P} = 2.02 \times 10^{15} \frac{\text{atoms}}{\text{cm}^2}$$

Thus, the current density from the LSV polarization curves can be converted into the TOF values according to the following equation:

$$TOF = \frac{\mathbb{Z}3.12 \times 10^{15} \frac{H_2 s^{-1}}{cm^2} \text{ per } \frac{mA}{cm^2} \mathbb{Z} \times |j|}{\text{surface sites } \times A_{\text{ECSA}}}$$

Figure S1. Values of electronic conductivity for S-Co₉S₈ and H-Co₉S₈.

Figure S2. HRTEM images of (a) S-Co₉S₈ and (b) H-Co₉S₈.

Figure S3. CV curves of S-Co₉S₈ at different sweep rates in 0.5 M H₂SO₄.

Figure S4. CV curves of H-Co $_9S_8$ at different sweep rates in 0.5 M H₂SO₄.

Figure S5. TOF values of S-Co₉S₈ and H-Co₉S₈ electrodes.

Figure S6. XRD patterns of S- Co_9S_8 before and after the cycling stability test in acidic HER.

Figure S7. CV curves of S-Co₉S₈ at different sweep rates in 1 M KOH.

Figure S8. CV curves of H-Co₉S₈ at different sweep rates in 1 M KOH.

Figure S9. XRD patterns of S-Co₉S₈ before and after the alkaline OER test.

Figure S10. CV curves of H-Co₉S₈ measured in 1M KOH at the range of current densities between 5 - 50 mV s⁻¹.

Figure S11. The comparison of CV curves was measured at 50 mV s⁻¹ for S-Co₉S₈ and H-Co₉S₈.

Figure S12. GCD curves under various current densities of the $H-Co_9S_8$ electrode by using 1 mol L^{-1} KOH aqueous electrolyte.

Figure S13. CV curves and GCD curves of the YP-50 electrode by using 1 mol L^{-1} KOH aqueous electrolyte.

Figure S14. Nyquist plots for S-Co₉S₈ and H-Co₉S₈.

Atom	x	У	Z	Occupancy
Col(Co)	0.5	0.5	0.5	1.0
Co2(Co)	0.126087	0.126087	0.126087	1.0
S1(S)	0.25	0.25	0.25	1.0
S2(S)	0.277277	0.0	0.0	1.0

Table S1. Structural parameters of S-Co₉S₈. The space group is Fm-3m (No. 225), a = b = c = 9.93 Å.

Table S2. Structural parameters of H-Co₉S₈. The space group is Fm-3m (No. 225), a = b = c = 8.52 Å.

Atom	x	y	z	Occupancy
Co1(Co)	0.5	0.5	0.5	1.0
Co2(Co)	0.12623	0.12623	0.12623	1.0
S1(S)	0.25	0.25	0.25	1.0
S2(S)	0.26230	0.0	0.0	1.0

Table S3. Comparison of Tafel slope and overpotential (η) for S-Co₉S₈ and other Co₉S₈-based acidic HER electrocatalysis.

Materials	η at 10 mA cm ⁻² (mV vs RHE)	Reference
Co ₉ S ₈ @C	240	ACS Appl. Mater. Interfaces, 2015, 7, 980–988
Co ₉ S ₈ /NC@MoS ₂	117	ACS Appl. Mater. Interfaces, 2017, 9, 28394–28405
C09S8-M0S2 HNBs	106	<i>Chem.–Asian J.</i> , 2018, 13, 413–420
Co ₉ S ₈ @MoS _x /CC	98	Nano Energy, 2017, 32, 470–478

Co ₉ S ₈ /1L MoS ₂ (3.5%)	97	Adv. Mater., 2018, 30, 1707301
Fe-Co ₉ S ₈ NSs/CC	65	Electrochim. Acta, 2018, 264, 157–165
Co_9S_8/WS_2	138	J. Mater. Chem. A, 2017, 5, 23361–23368
Co ₉ S ₈ /CNFs	165	Part. Part. Syst. Charact., 2017, 34, 1700189
Co ₉ S ₈ @MoS ₂ - 750	171	ACS Appl. Mater. Interfaces, 2018, 10, 1678–1689
S-Co ₉ S ₈	96.3	This work

Reference:

[1] H. Sun, Z. Yan, C. Tian, C. Li, X. Feng, R. Huang, Y. Lan, J. Chen, C. Li, Z. Zhang, M. Du, Bixbyite-type Ln_2O_3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution, *Nat. Commun.* , 2022, **13**, 3857.