Electronic Supplementary Information (ESI)

Utility of redox-active ligands for reversible multi-electron transfer in uranyl(VI) complexes

Tomoyuki Takeyama, *a Satoru Tsushima, ${ }^{\text {b,c }}$ Koichiro Takao*,a

AUTHOR ADDRESS

a Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan
${ }^{\mathrm{b}}$ Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
c International Research Frontiers Initiative (IRFI), Institute of Innovative Research,
Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$ in DMSO- d_{6}.

Figure S2. IR spectra of [$\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{DMSO}-d_{6}$ solution dissolving $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ in DMSO- d_{6}.

Figure S5. IR spectra of [$\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$.

Crystal structure of [$\left.\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ (DMSO) 0.5

The crystal structure analysis of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right] \cdot(\mathrm{DMSO})_{0.5}$ was performed. The obtained molecular structures of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ are shown in Figure S 6 . And crystallographic data is listed below.

Crystallographic data for [$\left.\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{L2}) \mathrm{DMSO}\right] \cdot(\mathrm{DMSO})_{0.5}: \mathrm{Fw}=899.93,0.15 \times 0.05 \times 0.02$ mm^{3}, orthorhombic, P21212, $a=28.7510(8) \AA$ ($\mathrm{A}, b=31.6909(9) \AA, c=9.4393(2) \AA, V=$ $8600.6(4) \AA^{3}, Z=8, T=93 \mathrm{~K}, D_{\text {calcd }}=1.390 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=3.886 \mathrm{~mm}^{-1}, G O F=1.016$, $R_{1}(I>2 \sigma)=0.0786, w R_{2}(\mathrm{all})=0.1812$.
(a)

(b)

Figure S6. ORTEP views of [$\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$. Ellipsoids are at 50% probability. Hydrogen atoms and solvent molecules were omitted by clarify. Disordered atoms are also represented.

The molecular structures of [$\mathrm{U}^{\mathrm{V} I} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$] are clearly determined, however, high quality of diffraction data was not obtained, because single crystals of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right] \cdot(\mathrm{DMSO})_{0.5}$ are poorly diffracting needle-like crystals. In spite of many trials for recrystallization and SCXRD experiments, many Alert level A and B are remained by check CIF report of International Union of Crystallography, as described below.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.53Ang From C9B 5.20 eA-3 PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.42Ang From C9A 3.95 eA-3

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds. \qquad 0.02185 Ang.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.83Ang From C17B 3.15 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.71Ang From C34A 2.84 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.52Ang From C2A 2.71 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.60Ang From C22B 2.57 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.48Ang From S2 -2.82 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 2.20Ang From C10B -2.76 eA-3 PLAT972_ALERT_2_B Check Calcd Resid. Dens. 0.89Ang From U1A -2.51 eA-3

Table S1. Selected bond lengths (A) of crystal structures of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ (DMSO) $)_{0.5}$.

$\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right] \cdot(\mathrm{DMSO})_{0.5}$	
$\mathrm{U}(1)-\mathrm{O}(1)$	$1.77(1)$
	$1.78(1)$
$\mathrm{U}(1)-\mathrm{O}(2)$	$1.79(1)$
	$1.79(1)$
$\mathrm{U}(1)-\mathrm{O}(3)$	$2.273(9)$
	$2.29(1)$
$\mathrm{U}(1)-\mathrm{O}(4)$	$2.277(9)$
	$2.30(1)$
$\mathrm{U}(1)-\mathrm{N}(1)$	$2.50(1)$
	$2.52(1)$
$\mathrm{U}(1)-\mathrm{N}(2)$	$2.52(1)$
	$2.51(1)$
$\mathrm{U}(1)-\mathrm{O}(5)$	$2.34(1)$
	$2.35(1)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.34(2)$
	$1.34(2)$
$\mathrm{C}(8)-\mathrm{N}(2)$	$1.31(2)$
	$1.35(2)$
$\mathrm{C}(1)-\mathrm{O}(3)$	$1.33(2)$
$\mathrm{C}(18)-\mathrm{O}(4)$	$1.33(2)$
	$1.31(2)$
	$1.34(1)$

(a)

(b)

Figure S7. ORTEP views of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{H}_{2} \mathrm{O}\right]$. Ellipsoids are at 50% probability. Hydrogen atoms and solvent molecules were omitted by clarify. Disordered atoms are also represented.

Table S2. Selected bond angles (${ }^{\circ}$) in $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{C}_{5} \mathrm{H} 5 \mathrm{~N}\right]$, $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{H}_{2} \mathrm{O}\right]$ and $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$.

$\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]$	$\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{H}_{2} \mathrm{O}\right]$		$\left[\mathrm{U}^{\mathrm{V} I} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$		
$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{N}(1)$	$65.5(3)$	$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{N}(1)$	$65.4(3), 65.7(3)$	$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{N}(1)$	$65.4(1)$
$\angle \mathrm{N}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$62.6(3)$	$\angle \mathrm{N}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$61.6(3), 62.9(3)$	$\angle \mathrm{N}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$63.2(1)$
$\angle \mathrm{O}(4)-\mathrm{U}(1)-\mathrm{N}(2)$	$64.8(3)$	$\angle \mathrm{O}(4)-\mathrm{U}(1)-\mathrm{N}(2)$	$65.5(3), 64.8(3)$	$\angle \mathrm{N}(2)-\mathrm{U}(1)-\mathrm{N}(3)$	$62.9(1)$
$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{N}(3)$	$86.9(3)$	$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(5)$	$83.1(3), 77.9(3)$	$\angle \mathrm{N}(3)-\mathrm{U}(1)-\mathrm{O}(4)$	$65.0(1)$
$\angle \mathrm{O}(4)-\mathrm{U}(1)-\mathrm{N}(3)$	$80.3(3)$	$\angle \mathrm{O}(4)-\mathrm{U}(1)-\mathrm{O}(5)$	$84.9(3), 89.1(3)$	$\angle \mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(4)$	$103.6(2)$
$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(3)$	$90.6(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(3)$	$92.2(3), 91.9(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(3)$	$91.1(2)$
$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(1)$	$87.4(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(1)$	$84.2(3), 88.4(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(1)$	$85.9(2)$
$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$87.0(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$89.4(3), 90.4(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(2)$	$87.7(2)$
$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4)$	$90.6(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4)$	$90.2(3), 92.7(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(3)$	$90.1(2)$
$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{N}(3)$	$86.7(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(5)$	$88.6(3), 86.2(3)$	$\angle \mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4)$	$90.7(2)$

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$ in DMSO- d_{6}.

Figure S9. IR spectra of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$.

> (a)

(b)

(c)

Figure S10. Cyclic voltammograms (CV) for $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}\left(\mathrm{Lx}_{2}\right) \mathrm{DMSO}_{y}\right]$] $(x=1-3, y=0-1)$. in DMSO at 295 K . [$\left.\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$ (a), $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ (b), and $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$ (c). Concentration of the complex was adjusted to 0.50 mM for $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{L1}) \mathrm{DMSO}\right]$ and $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ and 1.00 mM for $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{L3})\right]$. Tetra- n-butylammonium perchlorate $(0.1 \mathrm{M})$ was used as a supporting electrolyte. Potentials in the figures show the relative values to that of the $\mathrm{Fc}^{0 /+}$ redox couple. Scan rates are $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ (black), $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ (blue), $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$ (orange) and $500 \mathrm{mV} \cdot \mathrm{s}^{-1}(\mathrm{red})$.

Table S3. Electrochemical data of [$\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}$] in DMSO containing 0.1 M tetra-nbutylammonium perchlorate at 295 K . Potentials show the relative values to that of the $\mathrm{Fc}^{0 /+}$ redox couple.

Scan rate	$E_{\mathrm{pc}, 1} / \mathrm{V}$	$E_{\mathrm{pa}, 1} / \mathrm{V}$	$E_{1}{ }^{0} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 1} / \mathrm{V}$	$E_{\mathrm{pc}, 2} / \mathrm{V}$	$E_{\mathrm{pa}, 2} / \mathrm{V}$	$E_{2}{ }^{0} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 2} / \mathrm{V}$
$50 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.35	-1.29	-1.32	0.06	-2.06	-1.98	-2.02	0.08
$100 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.36	-1.29	-1.33	0.07	-2.08	-1.98	-2.03	0.10
$200 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.36	-1.28	-1.32	0.08	-2.09	-1.97	-2.03	0.12
$500 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.37	-1.28	-1.33	0.09	-2.11	-1.96	-2.04	0.15

Table S4. Electrochemical data of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ in DMSO containing 0.1 M tetra-nbutylammonium perchlorate at 295 K . Potentials show the relative values to that of the $\mathrm{Fc}^{0 /+}$ redox couple.

Scan rate	$E_{\mathrm{pc}, 1} / \mathrm{V}$	$E_{\mathrm{pa}, 1} / \mathrm{V}$	$E_{1}^{0^{\prime}} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 1} / \mathrm{V}$	$E_{\mathrm{pc}, 2} / \mathrm{V}$	$E_{\mathrm{pa}, 2} / \mathrm{V}$	$E_{2}^{0^{\prime}} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 2} / \mathrm{V}$
$50 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-0.82	-0.75	-0.79	0.07	-1.44	-1.36	-1.40	0.08
$100 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-0.82	-0.75	-0.79	0.07	-1.45	-1.36	-1.41	0.09
$200 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-0.82	-0.75	-0.79	0.07	-1.45	-1.36	-1.41	0.09
$500 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-0.83	-0.74	-0.79	0.09	-1.46	-1.35	-1.41	0.11

Table S5. Electrochemical data of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$ in DMSO containing 0.1 M tetra- n butylammonium perchlorate at 295 K . Potentials show the relative values to that of the $\mathrm{Fc}^{0 /+}$ redox couple.

Scan rate	$E_{\mathrm{pc}, 1} / \mathrm{V}$	$E_{\mathrm{pa}, 1} / \mathrm{V}$	$E_{1}{ }^{0} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 1} / \mathrm{V}$	$E_{\mathrm{pc}, 2} / \mathrm{V}$	$E_{\mathrm{pa}, 2} / \mathrm{V}$	$E_{2}^{0^{\prime}} / \mathrm{V}$	$\Delta E_{\mathrm{p}, 2} / \mathrm{V}$
$50 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.40	-1.33	-1.37	0.07	-2.03	-1.95	-1.99	0.08
$100 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.40	-1.33	-1.37	0.07	-2.03	-1.95	-1.99	0.08
$200 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.41	-1.33	-1.37	0.08	-2.03	-1.95	-1.99	0.08
$500 \mathrm{mV} \cdot \mathrm{s}^{-1}$	-1.41	-1.33	-1.37	0.08	-2.03	-1.95	-1.99	0.08

Figure S11. Nernstian plot for the spectral change of the electrochemical reduction of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{Lx}) \mathrm{DMSO}_{y}\right](x=1-3, y=0-1)$. [$\left.\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right](\mathrm{a})$, [$\left.\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right](\mathrm{b})$, and $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$ (c). The $\mathrm{Co}_{\mathrm{o}} / C_{\mathrm{R}}$ was calculated from the absorbance at $19157 \mathrm{~cm}^{-1}$ (a), 22989 cm^{-1} (b) and $21322 \mathrm{~cm}^{-1}$ (c).
(a)

(b)

(c)

Figure S12. Nernstian plot for the spectral change of the electrochemical reduction of $\left[\mathrm{UO}_{2}(\mathrm{~L} x)(\mathrm{DMSO})_{y}\right]^{-}(x=1-3, y=0-1) .\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-}(\mathrm{a}),\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{-}(\mathrm{b})$, and $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$(c). The C_{0} / C_{R} was calculated from the absorbance at $19157 \mathrm{~cm}^{-1}$ (a), $25000 \mathrm{~cm}^{-}$ ${ }^{1}$ (b) and $19685 \mathrm{~cm}^{-1}$ (c).
(a)

(c)

(b)

(d)

Figure S13. The optimized structures of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$ (a), [UO2(L1)DMSO] ${ }^{-}$(b), $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=0\right)(\mathrm{c})$, and $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(\mathrm{S}_{\mathrm{T}}=1\right)$ (d). Hydrogen atoms are omitted for clarity.

Table S6. The selected bond lengths of calculated structures of [$\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}$], $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-},\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=0\right)$, and $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(S_{T}=1\right)(\AA)$.

	$\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-}$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ $\left(\mathrm{S}_{\mathrm{T}}=0\right)$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ $\left(S_{\mathrm{T}}=1\right)$
$\mathrm{U}(1)-\mathrm{O}(1)$	1.795	1.809	1.831	1.873
$\mathrm{U}(1)-\mathrm{O}(2)$	1.798	1.813	1.838	1.882
$\mathrm{U}(1)-\mathrm{O}(3)$	2.309	2.308	2.355	2.432
$\mathrm{U}(1)-\mathrm{O}(4)$	2.299	2.303	2.353	2.431
$\mathrm{U}(1)-\mathrm{O}(5)$	2.393	2.448	2.524	2.546
$\mathrm{U}(1)-\mathrm{N}(1)$	2.602	2.536	2.448	2.595
$\mathrm{U}(1)-\mathrm{N}(2)$	2.599	2.534	2.449	2.593
$\mathrm{C}(7)-\mathrm{N}(1)$	1.300	1.341	1.383	1.339
$\mathrm{C}(8)-\mathrm{N}(2)$	1.299	1.341	1.365	1.339
$\mathrm{C}(7)-\mathrm{C}(8)$	1.437	1.394	1.365	1.400
$\mathrm{C}(1)-\mathrm{O}(3)$	1.311	1.328	1.335	1.312
$\mathrm{C}(14)-\mathrm{O}(4)$	1.315	1.329	1.335	1.313

Figure S14. Calculated MO energy diagrams of [$\left.\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$.

Figure S15. UV-vis-NIR spectrum of [$\left.\mathrm{U}^{\mathrm{V} I} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for [$\left.\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]$.

E (Hartree)
-0.05 -

Figure S16. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-}$.

Figure S17. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-}$in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical red lines correspond to the calculated transitions for [$\left.\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{-}$.

Figure S18. The optimized structures of [$\left.\mathrm{U}^{\mathrm{Vl}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$ (a), [UO2(L2)DMSO] ${ }^{-}$(b), $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}^{2-}\left(S_{\mathrm{T}}=0\right)(\mathrm{c})\right.$, and $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=1\right)$ (d). Hydrogen atoms are omitted for clarity.

Table S7. The selected bond lengths of calculated structures of [$\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$], $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{-},\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=0\right)$, and $\left[\mathrm{UO}_{2}(\mathrm{LL} 2) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=1\right)(\AA)$.

	$\left[\mathrm{UO}_{2}(\mathrm{L2}) \mathrm{DMSO}\right]$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}^{-}\right.$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}$ $\left(S_{\mathrm{T}}=0\right)$	$\left[\mathrm{UO}_{2}(\mathrm{L2}) \mathrm{DMSO}\right]^{2-}$ $\left(S_{\mathrm{T}}=1\right)$
$\mathrm{U}(1)-\mathrm{O}(1)$	1.799	1.814	1.836	1.881
$\mathrm{U}(1)-\mathrm{O}(2)$	1.795	1.809	1.828	1.871
$\mathrm{U}(1)-\mathrm{O}(3)$	2.306	2.314	2.343	2.427
$\mathrm{U}(1)-\mathrm{O}(4)$	2.306	2.312	2.341	2.427
$\mathrm{U}(1)-\mathrm{O}(5)$	2.393	2.451	2.523	2.545
$\mathrm{U}(1)-\mathrm{N}(1)$	2.585	2.514	2.436	2.584
$\mathrm{U}(1)-\mathrm{N}(2)$	2.578	2.511	2.436	2.584
$\mathrm{C}(7)-\mathrm{N}(1)$	1.327	1.355	1.384	1.351
$\mathrm{C}(8)-\mathrm{N}(2)$	1.326	1.354	1.384	1.351
$\mathrm{C}(7)-\mathrm{C}(8)$	1.480	1.461	1.447	1.470
$\mathrm{C}(1)-\mathrm{O}(3)$	1.310	1.325	1.334	1.311
$\mathrm{C}(18)-\mathrm{O}(4)$	1.312	1.326	1.334	1.311

Figure S19. Calculated MO energy diagrams of [$\left.\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]$.

Figure S20. UV-vis-NIR spectrum of [$\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$] in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for [$\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 2) \mathrm{DMSO}$].

Figure S21. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{-}$.

Figure S22. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}^{-}\right.$in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical red lines correspond to the calculated

(c)
(d)

Figure S23. The optimized structures of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right](\mathrm{a}),\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}(\mathrm{b}),\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{\mathrm{T}}=0\right)$
(c), and $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{\top}=1\right)$ (d). Hydrogen atoms are omitted for clarity.

Table S8. The selected bond lengths of calculated structures of $\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$, $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$, $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{T}=0\right)$, and $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{\mathrm{T}}=1\right)(\AA)$.

	$\left[\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$	$\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}$ $\left(\mathrm{S}_{\mathrm{T}}=0\right)$	$\left[\mathrm{UO}_{2}(\mathrm{LS})\right]^{2-}$ $\left(S_{\mathrm{T}}=1\right)$
$\mathrm{U}(1)-\mathrm{O}(1)$	1.791	1.804	1.821	1.815
$\mathrm{U}(1)-\mathrm{O}(2)$	1.791	1.804	1.821	1.815
$\mathrm{U}(1)-\mathrm{O}(3)$	2.302	2.325	2.336	2.319
$\mathrm{U}(1)-\mathrm{O}(4)$	2.298	2.309	2.346	2.320
$\mathrm{U}(1)-\mathrm{N}(1)$	2.637	2.608	2.564	2.535
$\mathrm{U}(1)-\mathrm{N}(2)$	2.593	2.519	2.441	2.533
$\mathrm{U}(1)-\mathrm{N}(3)$	2.635	2.572	2.584	2.536
$\mathrm{C}(7)-\mathrm{N}(1)$	1.289	1.303	1.341	1.346
$\mathrm{C}(7)-\mathrm{C}(8)$	1.455	1.438	1.402	1.413
$\mathrm{C}(8)-\mathrm{N}(2)$	1.349	1.371	1.406	1.374
$\mathrm{C}(12)-\mathrm{N}(2)$	1.349	1.379	1.398	1.375
$\mathrm{C}(12)-\mathrm{C}(13)$	1.455	1.420	1.414	1.412
$\mathrm{C}(13)-\mathrm{N}(3)$	1.288	1.321	1.329	1.346
$\mathrm{C}(1)-\mathrm{O}(3)$	1.312	1.319	1.329	1.330
$\mathrm{C}(19)-\mathrm{O}(4)$	1.314	1.326	1.325	1.331

Figure S24. Calculated MO energy diagrams of [$\left.\mathrm{U}^{\mathrm{VI}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$.

$\varepsilon / 10^{4} \mathrm{~cm}^{-1} \mathrm{M}^{-1}$

Figure S25. UV-vis-NIR spectrum of $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for $\left[\mathrm{U}^{\mathrm{V}} \mathrm{O}_{2}(\mathrm{~L} 3)\right]$.

Figure S26. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$.

Figure S27. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical red lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{-}$.

Figure S28. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(\mathrm{S}_{\mathrm{T}}=0\right)$.

Figure S29. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ with $S_{\top}=0$.

Figure S30. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}\left(S_{\top}=1\right)$.

Figure S31. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 1) \mathrm{DMSO}\right]^{2-}$ with $S_{\top}=1$.

Figure S32. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=0\right)$.

Figure S33. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}$ with $S_{\top}=0$.

Figure S34. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}\left(S_{\mathrm{T}}=1\right)$.

Figure S35. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 2) \mathrm{DMSO}\right]^{2-}$ with $S_{\mathrm{T}}=1$.

Figure S36. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{T}=0\right)$.

Figure S37. UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}$ with $S_{\top}=0$.

Figure S38. Calculated MO energy diagrams of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}\left(S_{T}=1\right)$.

Figure S39.UV-vis-NIR spectrum of $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}$ in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for $\left[\mathrm{UO}_{2}(\mathrm{~L} 3)\right]^{2-}$ with $S_{\tau}=1$.

Figure S40. Calculated MO energy diagrams of $U^{V_{1}} \mathrm{O}_{2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}-{ }^{\mathrm{Me}}\right.$ saldien). ${ }^{\mathrm{S} 1}$
(a)

(c)

$\left[\mathrm{M}^{\prime \prime}(\mathrm{PDI})_{2}\right]^{2+}$
$\left[\mathrm{M}^{11}(\mathrm{PDI})\left(\mathrm{PDI}^{\bullet-}\right)\right]^{+}$

$$
\begin{aligned}
& -1.31 \mathrm{~V}\left(\mathrm{M}=\mathrm{Fe}^{\mathrm{\prime}}\right) \\
& -1.39 \mathrm{~V}(\mathrm{M}=\mathrm{Zn})
\end{aligned}
$$

Scheme S1. Redox behavior $M(L 1),{ }^{S 2} M(L 2)^{S 3}$ and $\left[M^{11}(P D I)_{2}\right]^{2+}{ }^{S 4}$ reported previously.

References

[S1]. T. Takeyama, S. Tsushima, K. Takao, Inorg. Chem., 2021, 60, 11435-11449.
[S2]. A. V. Piskunov, O. Y. Trofimova, G. K. Fukin, S. Y. Ketkov, I V. Smolyaninov, V. K. Cherkasov, Dalton Trans., 2012, 41, 10970-10979.
[S3]. P. Chaudhuri, M. Hess, J. Müller, K. Hildenbrand, E. Bill, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 1999, 121, 9599-9610.
[S4]. B. Bruin, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, Inorg. Chem., 2000, 39, 2936-2947.

