# **Electronic Supplementary Information (ESI)**

# Utility of redox-active ligands for reversible multi-electron transfer in

uranyl(VI) complexes

Tomoyuki Takeyama, \*a Satoru Tsushima, b,c Koichiro Takao\*,a

### AUTHOR ADDRESS

<sup>a</sup> Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of

Technology 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan

<sup>b</sup> Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner

Landstraße 400, 01328 Dresden, Germany

<sup>c</sup> International Research Frontiers Initiative (IRFI), Institute of Innovative Research,

Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo,

Japan



**Figure S1.** <sup>1</sup>H NMR spectra of  $[U^{\vee I}O_2(L1)DMSO]$  in DMSO-*d*<sub>6</sub>.



Figure S2. IR spectra of  $[U^{VI}O_2(L1)DMSO]$ .





**Figure S3.** <sup>1</sup>H NMR spectra of the DMSO-*d*<sub>6</sub> solution dissolving  $[U^{VI}O_2(L1)C_5H_5N]$ .



**Figure S4.** <sup>1</sup>H NMR spectra of  $[U^{VI}O_2(L2)DMSO]$  in DMSO-*d*<sub>6</sub>.



Figure S5. IR spectra of  $[U^{VI}O_2(L2)DMSO]$ .

### Crystal structure of [U<sup>VI</sup>O<sub>2</sub>(L2)DMSO]·(DMSO)<sub>0.5</sub>

The crystal structure analysis of  $[U^{VI}O_2(L2)DMSO] \cdot (DMSO)_{0.5}$  was performed. The obtained molecular structures of  $[U^{VI}O_2(L2)DMSO]$  are shown in Figure S6. And crystallographic data is listed below.

Crystallographic data for  $[U^{VI}O_2(L2)DMSO] \cdot (DMSO)_{0.5}$ : Fw =899.93, 0.15 × 0.05 × 0.02 mm<sup>3</sup>, orthorhombic, *P*21212, *a* = 28.7510(8) Å, *b* = 31.6909(9) Å, *c* = 9.4393(2) Å, *V* = 8600.6(4) Å<sup>3</sup>, *Z* = 8, *T* = 93 K, *D*<sub>calcd</sub> = 1.390 g/cm<sup>3</sup>,  $\mu$ (Mo  $K\alpha$ ) = 3.886 mm<sup>-1</sup>, *GOF* = 1.016,  $R_1(I > 2\sigma) = 0.0786$ ,  $wR_2(all) = 0.1812$ .



**Figure S6.** ORTEP views of [U<sup>VI</sup>O<sub>2</sub>(L2)DMSO]. Ellipsoids are at 50% probability. Hydrogen atoms and solvent molecules were omitted by clarify. Disordered atoms are also represented.

The molecular structures of  $[U^{VI}O_2(L2)DMSO]$  are clearly determined, however, high quality of diffraction data was not obtained, because single crystals of  $[U^{VI}O_2(L2)DMSO] \cdot (DMSO)_{0.5}$  are poorly diffracting needle-like crystals. In spite of many trials for recrystallization and SCXRD experiments, many Alert level A and B are remained by check CIF report of International Union of Crystallography, as described below.

PLAT971\_ALERT\_2\_A Check Calcd Resid. Dens. 1.53Ang From C9B 5.20 eA-3 PLAT971\_ALERT\_2\_A Check Calcd Resid. Dens. 1.42Ang From C9A 3.95 eA-3

PLAT342\_ALERT\_3\_B Low Bond Precision on C-C Bonds.....0.02185 Ang.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.83Ang From C17B 3.15 eA-3 PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 1.71Ang From C34A 2.84 eA-3 PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 1.52Ang From C2A 2.71 eA-3 PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 1.60Ang From C22B 2.57 eA-3 PLAT972\_ALERT\_2\_B Check Calcd Resid. Dens. 1.48Ang From S2 -2.82 eA-3 PLAT972\_ALERT\_2\_B Check Calcd Resid. Dens. 2.20Ang From C10B -2.76 eA-3 PLAT972\_ALERT\_2\_B Check Calcd Resid. Dens. 0.89Ang From U1A -2.51 eA-3

| [U <sup>VI</sup> O <sub>2</sub> (L2)DMSO]·(DMSO) <sub>0.5</sub> |          |  |  |  |  |
|-----------------------------------------------------------------|----------|--|--|--|--|
| U(1) = O(1)                                                     | 1.77(1)  |  |  |  |  |
| 0(1) 0(1)                                                       | 1.78(1)  |  |  |  |  |
| $\prod(1) = O(2)$                                               | 1.79(1)  |  |  |  |  |
| 0(1) 0(2)                                                       | 1.79(1)  |  |  |  |  |
| U(1) - O(3)                                                     | 2.273(9) |  |  |  |  |
| 0(1) 0(0)                                                       | 2.29(1)  |  |  |  |  |
| U(1) - O(4)                                                     | 2.277(9) |  |  |  |  |
| 0(1) 0(4)                                                       | 2.30(1)  |  |  |  |  |
| U(1) - N(1)                                                     | 2.50(1)  |  |  |  |  |
| O(1) $N(1)$                                                     | 2.52(1)  |  |  |  |  |
| U(1) - N(2)                                                     | 2.52(1)  |  |  |  |  |
| 0(1) 1(2)                                                       | 2.51(1)  |  |  |  |  |
| U(1) - O(5)                                                     | 2.34(1)  |  |  |  |  |
|                                                                 | 2.35(1)  |  |  |  |  |
| C(7) - N(1)                                                     | 1.34(2)  |  |  |  |  |
|                                                                 | 1.34(2)  |  |  |  |  |
| C(8) - N(2)                                                     | 1.31(2)  |  |  |  |  |
|                                                                 | 1.35(2)  |  |  |  |  |
| C(1) - O(3)                                                     | 1.33(2)  |  |  |  |  |
| 0(1) 0(0)                                                       | 1.33(2)  |  |  |  |  |
| C(18) - O(4)                                                    | 1.31(2)  |  |  |  |  |
|                                                                 | 1.34(1)  |  |  |  |  |

**Table S1.** Selected bond lengths (Å) of crystal structures of  $[U^{\vee I}O_2(L2)DMSO] \cdot (DMSO)_{0.5}$ .



**Figure S7.** ORTEP views of  $[U^{\vee I}O_2(L2)H_2O]$ . Ellipsoids are at 50% probability. Hydrogen atoms and solvent molecules were omitted by clarify. Disordered atoms are also represented.

| [U <sup>∨I</sup> O₂(L1)C₅ | $[U^{\vee i}O_2(L1)C_5H_5N]$ |                 | $[U^{\vee I}O_2(L2)H_2O]$ |                 | _3)]     |
|---------------------------|------------------------------|-----------------|---------------------------|-----------------|----------|
| ∠O(3)−U(1)−N(1)           | 65.5(3)                      | ∠O(3)-U(1)-N(1) | 65.4(3), 65.7(3)          | ∠O(3)−U(1)−N(1) | 65.4(1)  |
| ∠N(1)−U(1)−N(2)           | 62.6(3)                      | ∠N(1)−U(1)−N(2) | 61.6(3), 62.9(3)          | ∠N(1)−U(1)−N(2) | 63.2(1)  |
| ∠O(4)−U(1)−N(2)           | 64.8(3)                      | ∠O(4)−U(1)−N(2) | 65.5(3), 64.8(3)          | ∠N(2)−U(1)−N(3) | 62.9(1)  |
| ∠O(3)−U(1)−N(3)           | 86.9(3)                      | ∠O(3)−U(1)−O(5) | 83.1(3), 77.9(3)          | ∠N(3)−U(1)−O(4) | 65.0(1)  |
| ∠O(4)−U(1)−N(3)           | 80.3(3)                      | ∠O(4)−U(1)−O(5) | 84.9(3), 89.1(3)          | ∠O(3)−U(1)−O(4) | 103.6(2) |
| ∠O(1)−U(1)−O(3)           | 90.6(3)                      | ∠O(1)−U(1)−O(3) | 92.2(3), 91.9(3)          | ∠O(1)−U(1)−O(3) | 91.1(2)  |
| ∠O(1)−U(1)−N(1)           | 87.4(3)                      | ∠O(1)−U(1)−N(1) | 84.2(3), 88.4(3)          | ∠O(1)−U(1)−N(1) | 85.9(2)  |
| ∠O(1)−U(1)−N(2)           | 87.0(3)                      | ∠O(1)−U(1)−N(2) | 89.4(3), 90.4(3)          | ∠O(1)−U(1)−N(2) | 87.7(2)  |
| ∠O(1)−U(1)−O(4)           | 90.6(3)                      | ∠O(1)−U(1)−O(4) | 90.2(3), 92.7(3)          | ∠O(1)−U(1)−N(3) | 90.1(2)  |
| ∠O(1)−U(1)−N(3)           | 86.7(3)                      | ∠O(1)−U(1)−O(5) | 88.6(3), 86.2(3)          | ∠O(1)−U(1)−O(4) | 90.7(2)  |

**Table S2.** Selected bond angles (°) in  $[U^{VI}O_2(L1)C_5H_5N]$ ,  $[U^{VI}O_2(L2)H_2O]$  and  $[U^{VI}O_2(L3)]$ .



**Figure S8.** <sup>1</sup>H NMR spectra of  $[U^{VI}O_2(L3)]$  in DMSO-*d*<sub>6</sub>.



Figure S9. IR spectra of  $[U^{\vee I}O_2(L3)]$ .



**Figure S10.** Cyclic voltammograms (CV) for  $[U^{VI}O_2(Lx)DMSO_y]$  (x = 1-3, y = 0-1). in DMSO at 295 K.  $[U^{VI}O_2(L1)DMSO]$  (a),  $[U^{VI}O_2(L2)DMSO]$  (b), and  $[U^{VI}O_2(L3)]$  (c). Concentration of the complex was adjusted to 0.50 mM for  $[U^{VI}O_2(L1)DMSO]$  and  $[U^{VI}O_2(L2)DMSO]$  and 1.00 mM for  $[U^{VI}O_2(L3)]$ . Tetra-*n*-butylammonium perchlorate (0.1 M) was used as a supporting electrolyte. Potentials in the figures show the relative values to that of the Fc<sup>0/+</sup> redox couple. Scan rates are 50 mV·s<sup>-1</sup> (black), 100 mV·s<sup>-1</sup> (blue), 200 mV·s<sup>-1</sup> (orange) and 500 mV·s<sup>-1</sup> (red).

**Table S3.** Electrochemical data of  $[U^{VI}O_2(L1)DMSO]$  in DMSO containing 0.1 M *tetra-n*butylammonium perchlorate at 295 K. Potentials show the relative values to that of the  $Fc^{0/+}$  redox couple.

| Scan rate              | $E_{\rm pc,1}$ / V | <i>E</i> <sub>pa,1</sub> / V | <i>E</i> 1°' / V | $\Delta E_{\rm p,1}$ / V | $E_{\rm pc,2}$ / V | $E_{\rm pa,2}$ / V | <i>E</i> <sub>2</sub> °' / V | $\Delta E_{\rm p,2}$ / V |
|------------------------|--------------------|------------------------------|------------------|--------------------------|--------------------|--------------------|------------------------------|--------------------------|
| 50 mV·s⁻¹              | -1.35              | -1.29                        | -1.32            | 0.06                     | -2.06              | -1.98              | -2.02                        | 0.08                     |
| 100 mV·s⁻¹             | -1.36              | -1.29                        | -1.33            | 0.07                     | -2.08              | -1.98              | -2.03                        | 0.10                     |
| 200 mV·s⁻¹             | -1.36              | -1.28                        | -1.32            | 0.08                     | -2.09              | -1.97              | -2.03                        | 0.12                     |
| 500 mV·s <sup>-1</sup> | -1.37              | -1.28                        | -1.33            | 0.09                     | -2.11              | -1.96              | -2.04                        | 0.15                     |

**Table S4.** Electrochemical data of  $[U^{VI}O_2(L2)DMSO]$  in DMSO containing 0.1 M *tetra-n*butylammonium perchlorate at 295 K. Potentials show the relative values to that of the  $Fc^{0/+}$  redox couple.

| Scan rate  | <i>E</i> <sub>pc,1</sub> / V | <i>E</i> <sub>pa,1</sub> / V | <i>E</i> 1°' / V | $\Delta E_{\rm p,1}$ / V | $E_{ m pc,2}$ / V | $E_{\rm pa,2}$ / V | <i>E</i> <sub>2</sub> °' / V | $\Delta E_{\rm p,2}$ / V |
|------------|------------------------------|------------------------------|------------------|--------------------------|-------------------|--------------------|------------------------------|--------------------------|
| 50 mV·s⁻¹  | -0.82                        | -0.75                        | -0.79            | 0.07                     | -1.44             | -1.36              | -1.40                        | 0.08                     |
| 100 mV·s⁻¹ | -0.82                        | -0.75                        | -0.79            | 0.07                     | -1.45             | -1.36              | -1.41                        | 0.09                     |
| 200 mV·s⁻¹ | -0.82                        | -0.75                        | -0.79            | 0.07                     | -1.45             | -1.36              | -1.41                        | 0.09                     |
| 500 mV·s⁻¹ | -0.83                        | -0.74                        | -0.79            | 0.09                     | -1.46             | -1.35              | -1.41                        | 0.11                     |

**Table S5.** Electrochemical data of  $[U^{\vee I}O_2(L3)]$  in DMSO containing 0.1 M *tetra-n*butylammonium perchlorate at 295 K. Potentials show the relative values to that of the  $Fc^{0/+}$  redox couple.

| Scan rate             | <i>E</i> <sub>pc,1</sub> / V | <i>E</i> <sub>pa,1</sub> / V | <i>E</i> 1°' / V | $\Delta E_{\rm p,1}$ / V | $E_{ m pc,2}$ / V | $E_{\rm pa,2}$ / V | <i>E</i> <sub>2</sub> °' / V | $\Delta E_{\rm p,2}$ / V |
|-----------------------|------------------------------|------------------------------|------------------|--------------------------|-------------------|--------------------|------------------------------|--------------------------|
| 50 mV·s <sup>−1</sup> | -1.40                        | -1.33                        | -1.37            | 0.07                     | -2.03             | -1.95              | -1.99                        | 0.08                     |
| 100 mV·s⁻¹            | -1.40                        | -1.33                        | -1.37            | 0.07                     | -2.03             | -1.95              | -1.99                        | 0.08                     |
| 200 mV·s⁻¹            | -1.41                        | -1.33                        | -1.37            | 0.08                     | -2.03             | -1.95              | -1.99                        | 0.08                     |
| 500 mV·s⁻¹            | -1.41                        | -1.33                        | -1.37            | 0.08                     | -2.03             | -1.95              | -1.99                        | 0.08                     |



**Figure S11.** Nernstian plot for the spectral change of the electrochemical reduction of  $[U^{VI}O_2(Lx)DMSO_y]$  (x = 1-3, y = 0-1).  $[U^{VI}O_2(L1)DMSO]$  (a),  $[U^{VI}O_2(L2)DMSO]$  (b), and  $[U^{VI}O_2(L3)]$  (c). The  $C_0/C_R$  was calculated from the absorbance at 19157 cm<sup>-1</sup> (a), 22989 cm<sup>-1</sup> (b) and 21322 cm<sup>-1</sup> (c).



**Figure S12.** Nernstian plot for the spectral change of the electrochemical reduction of  $[UO_2(Lx)(DMSO)_y]^-$  (x = 1-3, y = 0-1).  $[UO_2(L1)DMSO]^-$  (a),  $[UO_2(L2)DMSO]^-$  (b), and  $[UO_2(L3)]^-$  (c). The  $C_0/C_R$  was calculated from the absorbance at 19157 cm<sup>-1</sup> (a), 25000 cm<sup>-1</sup> (b) and 19685 cm<sup>-1</sup> (c).



Figure S13. The optimized structures of  $[U^{VI}O_2(L1)DMSO]$  (a),  $[UO_2(L1)DMSO]^-$  (b),  $[UO_2(L1)DMSO]^{2-}$  (S\_T = 0) (c), and  $[UO_2(L1)DMSO]^{2-}$  (S\_T = 1) (d). Hydrogen atoms are omitted for clarity.

|            |       |       | [UO <sub>2</sub> (L1)DMSO] <sup>2-</sup> | [UO <sub>2</sub> (L1)DMSO] <sup>2-</sup> |
|------------|-------|-------|------------------------------------------|------------------------------------------|
|            |       |       | $(S_{T} = 0)$                            | $(S_{T} = 1)$                            |
| U(1)-O(1)  | 1.795 | 1.809 | 1.831                                    | 1.873                                    |
| U(1)-O(2)  | 1.798 | 1.813 | 1.838                                    | 1.882                                    |
| U(1)-O(3)  | 2.309 | 2.308 | 2.355                                    | 2.432                                    |
| U(1)-O(4)  | 2.299 | 2.303 | 2.353                                    | 2.431                                    |
| U(1)-O(5)  | 2.393 | 2.448 | 2.524                                    | 2.546                                    |
| U(1)-N(1)  | 2.602 | 2.536 | 2.448                                    | 2.595                                    |
| U(1)-N(2)  | 2.599 | 2.534 | 2.449                                    | 2.593                                    |
| C(7)-N(1)  | 1.300 | 1.341 | 1.383                                    | 1.339                                    |
| C(8)-N(2)  | 1.299 | 1.341 | 1.365                                    | 1.339                                    |
| C(7)-C(8)  | 1.437 | 1.394 | 1.365                                    | 1.400                                    |
| C(1)-O(3)  | 1.311 | 1.328 | 1.335                                    | 1.312                                    |
| C(14)-O(4) | 1.315 | 1.329 | 1.335                                    | 1.313                                    |

**Table S6.** The selected bond lengths of calculated structures of  $[U^{VI}O_2(L1)DMSO]$ ,  $[UO_2(L1)DMSO]^-$ ,  $[UO_2(L1)DMSO]^{2-}$  ( $S_T = 0$ ), and  $[UO_2(L1)DMSO]^{2-}$  ( $S_T = 1$ ) (Å).



Figure S14. Calculated MO energy diagrams of  $[U^{VI}O_2(L1)DMSO]$ .



**Figure S15.** UV-vis-NIR spectrum of  $[U^{VI}O_2(L1)DMSO]$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for  $[U^{VI}O_2(L1)DMSO]$ .



Figure S16. Calculated MO energy diagrams of [UO<sub>2</sub>(L1)DMSO]<sup>-</sup>.



**Figure S17.** UV-vis-NIR spectrum of  $[UO_2(L1)DMSO]^-$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical red lines correspond to the calculated transitions for  $[UO_2(L1)DMSO]^-$ .



Figure S18. The optimized structures of  $[U^{\vee I}O_2(L2)DMSO]$  (a),  $[UO_2(L2)DMSO]^-$  (b), $[UO_2(L2)DMSO]^{2-}$  ( $S_T = 0$ ) (c), and  $[UO_2(L2)DMSO]^{2-}$  ( $S_T = 1$ ) (d). Hydrogen atoms areomittedforclarity.

|            |       |       | [UO <sub>2</sub> (L2)DMSO] <sup>2-</sup> | [UO <sub>2</sub> (L2)DMSO] <sup>2-</sup> |
|------------|-------|-------|------------------------------------------|------------------------------------------|
|            |       |       | $(S_{T} = 0)$                            | (S <sub>T</sub> = 1)                     |
| U(1)-O(1)  | 1.799 | 1.814 | 1.836                                    | 1.881                                    |
| U(1)-O(2)  | 1.795 | 1.809 | 1.828                                    | 1.871                                    |
| U(1)-O(3)  | 2.306 | 2.314 | 2.343                                    | 2.427                                    |
| U(1)-O(4)  | 2.306 | 2.312 | 2.341                                    | 2.427                                    |
| U(1)-O(5)  | 2.393 | 2.451 | 2.523                                    | 2.545                                    |
| U(1)-N(1)  | 2.585 | 2.514 | 2.436                                    | 2.584                                    |
| U(1)-N(2)  | 2.578 | 2.511 | 2.436                                    | 2.584                                    |
| C(7)-N(1)  | 1.327 | 1.355 | 1.384                                    | 1.351                                    |
| C(8)-N(2)  | 1.326 | 1.354 | 1.384                                    | 1.351                                    |
| C(7)-C(8)  | 1.480 | 1.461 | 1.447                                    | 1.470                                    |
| C(1)-O(3)  | 1.310 | 1.325 | 1.334                                    | 1.311                                    |
| C(18)-O(4) | 1.312 | 1.326 | 1.334                                    | 1.311                                    |

**Table S7.** The selected bond lengths of calculated structures of  $[U^{VI}O_2(L2)DMSO]$ ,  $[UO_2(L2)DMSO]^-$ ,  $[UO_2(L2)DMSO]^{2-}$  ( $S_T = 0$ ), and  $[UO_2(L2)DMSO]^{2-}$  ( $S_T = 1$ ) (Å).



Figure S19. Calculated MO energy diagrams of  $[U^{VI}O_2(L2)DMSO]$ .



**Figure S20.** UV-vis-NIR spectrum of  $[U^{VI}O_2(L2)DMSO]$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for  $[U^{VI}O_2(L2)DMSO]$ .



Figure S21. Calculated MO energy diagrams of [UO<sub>2</sub>(L2)DMSO]<sup>-</sup>.



Figure S22. UV-vis-NIR spectrum of  $[UO_2(L2)DMSO]^-$  in DMSO and predicted bandpositions and intensities of the TD-DFT calculation. The vertical red lines correspond to thecalculatedtransitionsfor $[UO_2(L2)DMSO]^-$ .



**Figure S23.** The optimized structures of  $[U^{VI}O_2(L3)]$  (a),  $[UO_2(L3)]^-$  (b),  $[UO_2(L3)]^{2-}$  ( $S_T = 0$ ) (c), and  $[UO_2(L3)]^{2-}$  ( $S_T = 1$ ) (d). Hydrogen atoms are omitted for clarity.

|             |                    |                        | [UO <sub>2</sub> (L3)] <sup>2-</sup> | [UO <sub>2</sub> (L3)] <sup>2-</sup> |
|-------------|--------------------|------------------------|--------------------------------------|--------------------------------------|
|             | $[0^{+}O_{2}(L3)]$ | [UU <sub>2</sub> (L3)] | $(S_{T} = 0)$                        | $(S_{T} = 1)$                        |
| U(1)-O(1)   | 1.791              | 1.804                  | 1.821                                | 1.815                                |
| U(1)-O(2)   | 1.791              | 1.804                  | 1.821                                | 1.815                                |
| U(1)-O(3)   | 2.302              | 2.325                  | 2.336                                | 2.319                                |
| U(1)-O(4)   | 2.298              | 2.309                  | 2.346                                | 2.320                                |
| U(1)-N(1)   | 2.637              | 2.608                  | 2.564                                | 2.535                                |
| U(1)-N(2)   | 2.593              | 2.519                  | 2.441                                | 2.533                                |
| U(1)-N(3)   | 2.635              | 2.572                  | 2.584                                | 2.536                                |
| C(7)-N(1)   | 1.289              | 1.303                  | 1.341                                | 1.346                                |
| C(7)-C(8)   | 1.455              | 1.438                  | 1.402                                | 1.413                                |
| C(8)-N(2)   | 1.349              | 1.371                  | 1.406                                | 1.374                                |
| C(12)-N(2)  | 1.349              | 1.379                  | 1.398                                | 1.375                                |
| C(12)-C(13) | 1.455              | 1.420                  | 1.414                                | 1.412                                |
| C(13)-N(3)  | 1.288              | 1.321                  | 1.329                                | 1.346                                |
| C(1)-O(3)   | 1.312              | 1.319                  | 1.329                                | 1.330                                |
| C(19)-O(4)  | 1.314              | 1.326                  | 1.325                                | 1.331                                |

**Table S8.** The selected bond lengths of calculated structures of  $[U^{VI}O_2(L3)]$ ,  $[UO_2(L3)]^-$ ,  $[UO_2(L3)]^{2-}$  ( $S_T = 0$ ), and  $[UO_2(L3)]^{2-}$  ( $S_T = 1$ ) (Å).



Figure S24. Calculated MO energy diagrams of  $[U^{VI}O_2(L3)]$ .



**Figure S25.** UV-vis-NIR spectrum of  $[U^{VI}O_2(L3)]$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical black lines correspond to the calculated transitions for  $[U^{VI}O_2(L3)]$ .



Figure S26. Calculated MO energy diagrams of [UO<sub>2</sub>(L3)]<sup>-</sup>.



**Figure S27.** UV-vis-NIR spectrum of  $[UO_2(L3)]^-$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical red lines correspond to the calculated transitions for  $[UO_2(L3)]^-$ .



**Figure S28.** Calculated MO energy diagrams of  $[UO_2(L1)DMSO]^{2-}$  ( $S_T = 0$ ).



**Figure S29.** UV-vis-NIR spectrum of  $[UO_2(L1)DMSO]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L1)DMSO]^{2-}$  with  $S_T = 0$ .



Figure S30. Calculated MO energy diagrams of  $[UO_2(L1)DMSO]^{2-}$  (S<sub>T</sub> = 1).



**Figure S31.** UV-vis-NIR spectrum of  $[UO_2(L1)DMSO]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L1)DMSO]^{2-}$  with  $S_T = 1$ .



Figure S32. Calculated MO energy diagrams of  $[UO_2(L2)DMSO]^{2-}$  (S<sub>T</sub> = 0).



**Figure S33.** UV-vis-NIR spectrum of  $[UO_2(L2)DMSO]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L2)DMSO]^{2-}$  with  $S_T = 0$ .



Figure S34. Calculated MO energy diagrams of  $[UO_2(L2)DMSO]^{2-}$  (S<sub>T</sub> = 1).



**Figure S35.** UV-vis-NIR spectrum of  $[UO_2(L2)DMSO]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L2)DMSO]^{2-}$  with  $S_T = 1$ .



**Figure S36.** Calculated MO energy diagrams of  $[UO_2(L3)]^{2-}$  ( $S_T = 0$ ).



**Figure S37.** UV-vis-NIR spectrum of  $[UO_2(L3)]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L3)]^{2-}$  with  $S_T = 0$ .



Figure S38. Calculated MO energy diagrams of  $[UO_2(L3)]^{2-}$  (S<sub>T</sub> = 1).



**Figure S39.**UV-vis-NIR spectrum of  $[UO_2(L3)]^{2-}$  in DMSO and predicted band positions and intensities of the TD-DFT calculation. The vertical blue lines correspond to the calculated transitions for  $[UO_2(L3)]^{2-}$  with  $S_T = 1$ .



Figure S40. Calculated MO energy diagrams of U<sup>VI</sup>O<sub>2</sub>(R<sub>1</sub>,R<sub>2</sub>-<sup>Me</sup>saldien).<sup>S1</sup>



**Scheme S1.** Redox behavior M(L1), <sup>S2</sup> M(L2)<sup>S3</sup> and  $[M^{II}(PDI)_2]^{2+S4}$  reported previously.

#### References

- [S1]. T. Takeyama, S. Tsushima, K. Takao, *Inorg. Chem.*, 2021, **60**, 11435–11449.
- [S2]. A. V. Piskunov, O. Y. Trofimova, G. K. Fukin, S. Y. Ketkov, I V. Smolyaninov, V. K. Cherkasov, *Dalton Trans.*, 2012, **41**, 10970–10979.
- [S3]. P. Chaudhuri, M. Hess, J. Müller, K. Hildenbrand, E. Bill, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 1999, 121, 9599–9610.
- [S4]. B. Bruin, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, *Inorg. Chem.*, 2000, **39**, 2936–2947.