Electronic Supporting Information

β-PdBi₂ Monolayer for Efficient Electrocatalytic NO Reduction to NH₃: A

Computational Study

Yuting Sun,^a Zhongxu Wang,^a Yuejie Liu,^{b,*} Qinghai Cai,^{a,c} Jingxiang Zhao ^{a,*}

^a College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and

Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin 150025, Heilongjiang, China

^b Modern Experiment Center, Harbin Normal University, Harbin, 150025, China

^c Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological

Safety, Harbin 150025, China

* To whom correspondence should be addressed. Email: liuyuejie@hrbnu.edu.cn (Y.

Liu); zhaojingxiang@hrbnu.edu.cn (J. Zhao)

COMPUTATIONAL DETAILS

ΔG The value obtained formula: can be by the $\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{pH} + eU$, where ΔE is the reaction energy of reactant and product species adsorbed on the catalyst directly obtained from DFT computations; ΔZPE and ΔS are the changes between the adsorbed species and the gas phase molecules in zero-point energies and entropy at 298.15 K, which can be calculated from the vibrational frequencies. In the CHE model, ΔG_{pH} is the free energy correction of pH, and can be calculated by: $\Delta G_{pH} = K_B T \times pH \times ln10$. Notably, the pH value was set to be zero in this work for simplicity; U was the applied potential.

According to the obtained free energy change of each elementary step, the limiting potential (U_L) was further computed as follows: U_L = -max (ΔG_1 , ΔG_2 , ΔG_3 , ΔG_4, ΔG_i)/e.

Constant-Potential Calculations In the constant-potential calculations, in order to elucidate the reaction mechanism at different electrode potentials, the excess charge per unit cell (Δ n) from – 2.0 e⁻ to + 2.0 e⁻ with a step size of 0.5 e⁻ was added. A reference value of 4.6 eV was adopted for the standard hydrogen electrode (SHE).

The potential-dependent energy can be calculated by:

$$E = E_{DFT} - \Delta n (V_{sol} + \varphi_a/e)$$

where E_{DFT} is the DFT-calculated energy, V_{sol} is the electrostatic potential of the bulk

electrolyte, and $-\varphi_q$ is the work function of the charged system.

The relation between φ_q and the corresponding electrode potential referenced to the standard hydrogen electrode (SHE) scale is calculated by:

$$U_q(U/SHE) = -4.6V - \varphi_{q/e}$$

The E-Uq quadratic form could be written as:

$$E(U_q) = -\frac{1}{2}C(U_q - U_0)^2 + E_0$$

where U_0 , C, and E_0 are the fitted values of the potential of zero charge (PZC), capacitance of the corresponding system, and the energy of the system at the PZC, respectively.

Fixed potential, the potential reference to the SHE scale changes by changing the pH value, which could be calculated by:

$$U_{RHE} = U_{SHE} + 0.0592 \times pH$$

The dissolution potentials To evaluate the stability of β -PdBi₂ monolayer in strong acidic media, we computed the dissolution potentials (U_{diss} , in V) of Bi in β -PdBi₂ monolayer at pH = 0, which was defined as: $U_{diss} = U_{Bi}^{0} + [E_{Bi,bulk} - (E_{\beta - PdBi2} - E_{d - \beta - PdBi2})]/ne$, where U_{Bi}^{0} is the standard dissolution potential of Bi in the bulk form, $d-\beta$ -PdBi₂ is the defective β -PdBi₂ monolayer by dissolving (removing) one Bi to solutions and *n* is the coefficient for the aqueous dissolution reaction: Bi + H⁺ \leftrightarrow Bi⁺ + 1/2H₂, namely, *n* equals to 1.

Table S1. The computed free energy changes (ΔG , eV) of each possible elementary step for NORR to generate NH₃ product on β -PdBi₂ monolayer. The mared red step represent its higher selectivity.

Elementary step	Free energy change (ΔG)
NO (g) + $^* \rightarrow ^*$ NO	-0.24
$*NO + H^+ + e^- \rightarrow *NHO$	0.35
$*NO + H^+ + e^- \rightarrow *NOH$	0.74
*NHO + H ⁺ + $e^- \rightarrow *NH_2O$	-0.54
$^{*}NHO + H^{+} + e^{-} \rightarrow ^{*}NHOH$	-0.04
$^*\mathrm{NH}_2\mathrm{O} + \mathrm{H}^+ + \mathrm{e}^- \rightarrow ^*\mathrm{NH}_3 + ^*\mathrm{O}$	-1.73
$^{*}NH_{2}O + H^{+} + e^{-} \rightarrow ^{*}NH_{2}OH$	0.13
$^{*}O + H^{+} + e^{-} \rightarrow ^{*}OH$	-0.62
$^{*}OH + H^{+} + e^{-} \rightarrow H_{2}O + ^{*}$	-0.64

Reaction intermediates	Energy (E)	R ²
*	$E = -1.60U^2 - 4.42U - 227.96$	0.99
*NO	$E = -1.43U^2 - 3.71U - 240.64$	0.99
*NHO	$E = -1.39U^2 - 3.67U - 244.08$	0.99
*NH ₂ O	$E = -1.66U^2 - 4.48U - 248.99$	0.99
*0	$E = -1.29U^2 - 3.28U - 233.43$	0.99
*OH	$E = -1.72U^2 - 4.48U - 238.45$	0.99

Table S2. The quadratic relation between the energy (E) of the reaction intermediates

 and dependence of applied electrochemical potential U.

Fig. S1. Variations of temperature and energy as a function of the time for AIMD simulations of β -PdBi₂ monolayer; insert are top and side views of the snapshot of atomic configuration. The simulation is run under 500 K for 10 ps with a time step of 2 fs. Blue and orange spheres represent the Bi and Pd atoms, respectively.

Fig. S2. The surface Pourbaix diagrams of β -PdBi₂ monolayer.

Fig. S3. NO were adsorbed on β -PdBi₂ monolayer via the (a) N-end, (b) O-end, and (c)

side-on patterns.

Fig. S4. The optimized configuration of (a) NO adsorbed on the Bi-top position via the N-end pattern. (b) and (c) two possible Bi-Bi bridge sites was obtained. (d) and (e) the bridge and hollow sites for the O-end pattern.

Fig. S5. The effect of aqueous solution on the catalytic activity of β -PdBi₂ for NO-to-

NH₃ conversion.

Fig. S6. The effect of SOC on the catalytic activity of β -PdBi₂ for NO-to-NH₃ conversion.

Fig. S7. The obtained N_2O_2 stable configurations on β -PdBi₂ monolayer via (a) Oend and (b) N-end patterns.

Fig. S8. Variations of temperature and energy as a function of the time for AIMD simulations of β -PdBi₂ monolayer under 7% tensile strain and the snapshots of atomic configuration. The simulation was run under 500 K for 10 ps with a time step of 2 fs. Blue and orange spheres represent the Bi and Pd atoms, respectively.

Fig. S9. The calculated Gibbs free profile of HER on β -PdBi₂ monolayer when a tensile strain of 7% was applied.

Fig. S10. The computed crystal orbital Hamilton population (COHP) between NO molecule and β -PdBi₂ monolayer under different tensile strain.