Structure and Optical Property Evolutions in $PbM(PO_4)X$ (M =

Zn, Sn; X = halogen): SHG Effect and Birefringence

Xiao-Bao Li^a, Chun-Li Hu^a, Fang Kong^{*,a}, Jiang-Gao Mao^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

E-mail: kongfang@fjirsm.ac.cn

Table of Contents

Table S1. Crystal data and refinement details of the four crystals.

Table S2. Selected bond lengths (Å) for the four crystals.

Computational method

Table S3. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) for the four crystals.

Table S4. The birefringence of some typical phosphates.

Figure S1. Simulated and measured XRD powder patterns for $PbZn(PO_4)F$ (a), $PbSn(PO_4)Br$ (b) and $PbSn(PO_4)I$ (c).

Figure S2. The connection modes of PbO_2F_2 in $PbZn(PO_4)F$.

Figure S3. IR spectra for PbZn(PO₄)F (a), PbSn(PO₄)Br (b) and PbSn(PO₄)I (c).

Figure S4. UV–vis–NIR diffuse reflectance spectra for $PbZn(PO_4)F$ (a), $PbSn(PO_4)Br$ (b) and $PbSn(PO_4)I$ (c).

Figure S5. The thermal analysis curves for $PbZn(PO_4)F$ (a), $PbSn(PO_4)Br$ (b) and $PbSn(PO_4)I$ (c).

Figure S6. SHG density map of d_{33} in the valence band (left) and the conduction band (right) of PbZn(PO₄)F.

Figure S7. The band structures of PbZn(PO₄)F (a), PbSn(PO₄)Cl (b), PbSn(PO₄)Br (c) and PbSn(PO₄)I (d).

References

Formula	$PbZn(PO_4)F(1)$	$PbSn(PO_4)Cl(2)$	$PbSn(PO_4)Br(3)$	PbSn(PO ₄)I (4)	
F W	386.53	456.30	500.76	547.75	
Temperature	294.56(10) K	293(2) (K)	281.8(5) (K)	296.59(10) (K)	
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic	
Space group	$Pna2_1$	$P2_{1}/n$	$P2_{1}/n$	<i>P</i> -1	
a (Å)	8.9845(10)	8.3519(2)	8.4780(9)	4.8059(6)	
b (Å)	9.3813(13)	4.72080(10)	4.7595(5)	8.1218(9)	
c (Å)	4.8212(6)	14.5277(3)	15.0060(16)	8.6719(10)	
α (deg)/°	90.00	90.00	90.00	109.324(10)	
β (deg)/°	90.00	101.299(2)	101.898(10)	91.471(10)	
γ (deg)/°	90.00	90.00	90.00	90.588(10)	
V (Å ³)	406.36(9)	561.69(2)	592.50(11)	319.00(8)	
Ζ	4	4	4	2	
Flack factor	-0.023(14)	/	/	/	
$\rho_{calc} \left(g/cm^3\right)$	6.318	5.396	5.614	5.698	
μ (mm ⁻¹)	47.595	35.057	39.527	35.258	
GOF on F^2	1.013	1.064	0.933	1.132	
$R_1, wR_2[I > 2\sigma(I)]^a$	0.0331,	0.0490, 0.1273	0.0466, 0.1192	0.0747, 0.2182	
R_1 , w R_2 (all data)	0.0366, 0.0715	0.0510, 0.1287	0.0508, 0.1274	0.0786, 0.2211	
^a R ₁ = $\sum F_o - F_c / \sum F_o $, wR ₂ = { $\sum w[(F_o)^2 - (F_c)^2]^2 / \sum w[(F_o)^2]^2$ } ^{1/2}					

 Table S1. Crystal data and refinement details of the four crystals.

Selected bond lengths (Å) for PbZn(PO ₄)F (1)					
Pb(1)-F(1)#1	2.359(7)	Zn(1)-O(4)#4	1.966(8)		
Pb(1)-F(1)	2.504(6)	Zn(1)-F(1)#5	2.097(5)		
Pb(1)-O(2)#2	2.469(8)	P(1)-O(1)	1.530(7)		
Pb(1)-O(1)#3	2.514(10)	P(1)-O(2)	1.551(8)		
Zn(1)-O(1)#3	2.007(6)	P(1)-O(3)	1.515(11)		
Zn(1)-O(2)#2	2.023(8)	P(1)-O(4)	1.542(8)		
Zn(1)-O(3)	2.005(9)				
S	elected bond lengths (Å) for PbSn(PO ₄)Cl (2)		
Pb(1)-Cl(1)	2.830(4)	Sn(1)-O(2)	2.196(9)		
Pb(1)-O(1)#1	2.430(8)	Sn(1)-O(3)#3	2.159(8)		
Pb(1)-O(1)#2	2.432(8)	P(1)-O(1)	1.530(8)		
Pb(1)-O(2)	2.669(8)	P(1)-O(2)	1.538(8)		
Pb(1)-O(3)#1	2.707(9)	P(1)-O(3)	1.537(9)		
Sn(1)-O(4)#1	2.110(9)	P(1)-O(4)	1.538(9)		
Selected bond lengths (Å) for PbSn(PO ₄)Br (3)					
Pb(1)-Br(1)	2.9770(15)	Sn(1)-O(3)#3	2.153(8)		
Pb(1)-O(1)#1	2.426(9)	Sn(1)-O(4)#2	2.134(9)		
Pb(1)-O(1)#2	2.453(9)	P(1)-O(1)	1.534(10)		
Pb(1)-O(2)	2.635(9)	P(1)-O(2)	1.531(9)		
Pb(1)-O(3)#2	2.734(8)	P(1)-O(3)	1.550(9)		
Sn(1)-O(2)	2.232(9)	P(1)-O(4)	1.525(10)		
Selected bond lengths (Å) for PbSn(PO ₄)I (4)					
Pb(1)-I(1)	3.135(2)	Sn(1)-O(3)	2.104(19)		
Pb(1)-O(1)	2.700(19)	Sn(1)-O(4)#3	2.15(2)		
Pb(1)-O(2)#1	2.44(2)	P(1)-O(1)	1.540(19)		
Pb(1)-O(2)#2	2.450(19)	P(1)-O(2)	1.536(19)		
Pb(1)-O(4)#2	2.74(2)	P(1)-O(3)#4	1.54(2)		
Sn(1)-O(1)	2.210(19)	P(1)-O(4)	1.56(2)		

Table S2. Selected bond lengths (Å) for the four crystals.

Symmetry transformations used to generate equivalent atoms:

For PbZn(PO₄)F (1): #1 -x, -y+1, z+1/2 #2 -x+1/2, y-1/2, z+1/2 #3 -x, -y+2, z+1/2 #4 x, y, z+1 #5 -x+1/2, y+1/2, z+1/2.

For PbSn(PO₄)Cl (**2**): #1 x, y-1, z #2 -x+2, -y+1, -z+1 #3 -x+1, -y+1, -z+1.

For PbSn(PO₄)Br (**3**): #1 -x+2, -y+1, -z+1 #2 x, y-1, z #3 -x+1, -y+1, -z+1.

For PbSn(PO₄)I (4): #1 -x+1, -y, -z+2 #2 x-1, y, z #3 -x+1, -y, -z+1 #4 x+1, y, z.

Computational method.

The method of plane-wave pseudo-potential (PWPP) of density functional theory (DFT) was used to calculate the electronic structure and optical properties of compounds by running the CASTEP program in the Material Studio software package.^{1,} ² By employing the generalized gradient approximation (GGA), the Perdew-Burke-Ernzerhof (PBE) general functional was used to calculate the exchange-correlation potential.^{3, 4} The ion nucleus-electron interactions were described by the Norm conserving pseudopotentials (NCP). The valence electrons of the four compounds were set as follows: Pb-5d¹⁰6s²6p², Sn-5s²5p², Zn-3d¹⁰4s², P-3s²3p³, O-2s²2p⁴, F-2s²2p⁵, Cl-3s²3p⁵, Br-4s²4p⁵, I-5s²5p⁵. The cut-off energies of the four compounds (850 eV, 820 eV, 820 eV and 820 eV) under the NCP determined the number of plane waves contained in the basis sets. The four compounds were numerically integrated over the Brillouin zone using Monkhorst-Pack k-point sampling of 3×3×5, 3×5×2, 3×5×2 and 5×3×3.

Table S3. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) for the four crystals.

Compound	k-point	L-CB (eV)	H-VB (eV)
PbZn(PO ₄)F	G (0.000 0.000 0.000)	4.478332	-0.01249
	Z (0.000 0.000 0.500)	4.696504	-0.05564
	T (-0.500 0.000 0.500)	4.874404	-0.09792
	Y (-0.500 0.000 0.000)	4.44296	-0.12904
	S (-0.500 0.500 0.000)	4.61555	-0.09943
	X (0.000 0.500 0.000)	4.68196	-0.13624
	U (0.000 0.500 0.500)	4.55085	-0.0038
	R (-0.500 0.500 0.500)	4.865496	-0.05896
	Z (0.000 0.000 0.500)	3.010691	-0.20792
	G (0.000 0.000 0.000)	2.71979	0
	Y (0.000 0.500 0.000)	3.346421	-0.53265
DhSm(DO)C1	A (-0.500 0.500 0.000)	3.169945	-0.63279
PDSII(PO ₄)CI	B (-0.500 0.000 0.000)	2.728321	-0.29083
	D (-0.500 0.000 0.500)	2.569063	-0.26133
	E (-0.500 0.500 0.500)	2.912721	-0.62013
	C (0.000 0.500 0.500)	3.361783	-0.54616
	Z (0.000 0.000 0.500)	3.183517	-0.20721
	G (0.000 0.000 0.000)	2.920716	0
PbSn(PO ₄)Br	Y (0.000 0.500 0.000)	3.346633	-0.3243
	A (-0.500 0.500 0.000)	3.190713	-0.47053
	B (-0.500 0.000 0.000)	2.89355	-0.27724
	D (-0.500 0.000 0.500)	2.777096	-0.25666
	E (-0.500 0.500 0.500)	2.926075	-0.4655
	C (0.000 0.500 0.500)	3.394165	-0.32947
PbSn(PO ₄)I	G (0.000 0.000 0.000)	2.758476	-0.20444
	F (0.000 0.500 0.000)	2.897856	-0.60437
	Q (0.000 0.000 0.500)	2.581096	0
	Z (0.500 0.000 0.000)	2.63994	-0.23483
	G (0.000 0.500 0.500)	2.758476	-0.20444

Phosphates' types	Compounds	Space	Birefringence
		group	
Orthophosphates	BPO ₄ ⁵	<i>I-4</i>	0.0001@1064nm
	KH ₂ PO ₄ ⁶	Im2d	0.035@1064nm
	LiCs ₂ PO ₄ ⁷	<i>Cmc</i> 2 ₁	0.01@1064nm
	KMg(H ₂ O)PO ₄ ⁸	Pmn2 ₁	0.017@1064nm
	RbMgPO ₄ ·6H ₂ O ⁹	Pmn2 ₁	0.005@1064nm
	CsMgPO ₄ ·6H ₂ O ⁹	P6 ₃ mc	0.006@1064nm
	LiPbPO ₄ ¹⁰	Pna2 ₁	0.021@1064nm
Polyphosphates	$Rb_3BaBi(P_2O_7)_2^{11}$	<i>P</i> 2 ₁	0.025@1064nm
	$Cs_3BaBi(P_2O_7)_2^{11}$	P212121	0.025@1064nm
	K ₂ PbP ₂ O ₇ ¹²	C2/ _C	0.019@1064nm
	Rb ₂ PbP ₂ O ₇ ¹²	C2/ _C	0.028@1064nm
	$K_4Mg_4(P_2O_7)_3^{13}$	Pc	0.0108@1064nm
	$KLa(PO_3)_4^{14}$	<i>P</i> 2 ₁	0.008@1064nm
	CsLa(PO ₃) ₄ ¹⁵	<i>P</i> 2 ₁	0.006@1064nm
	BaPO ₃ Cl ¹⁶	$P2_{1}/c$	0.021@1064nm
	$K_2SrP_4O_{12}^{17}$	I-4	0.016@1064nm
Fluorophosphates	Cd _{2.5} (NH ₄) ₂ (PO ₃ F) ₃ Cl · 2H ₂ O ¹⁸	$P2_{1}/c$	0.035@546nm
	$Na_{1.5}Rb_{0.5}PO_3F \cdot H_2O^{19}$	Pmn2 ₁	0.034@546 nm
	$(NH_4)_2Ba(PO_2F_2)_4^{20}$	P2/n	0.022@1064nm
	$Ba(PO_2F_2)_2^{20}$	I-42d	0.011@1064nm

Table S4. The birefringence of some typical phosphates.

Figure S1. Simulated and measured XRD powder patterns of $PbZn(PO_4)F$ (a), $PbSn(PO_4)Br$ (b) and $PbSn(PO_4)I$ (c).

Figure S2. The connection modes of PbO_2F_2 in $PbZn(PO_4)F$.

Figure S4. UV–vis–NIR diffuse reflectance spectra of $PbZn(PO_4)F$ (a), $PbSn(PO_4)Br$ (b) and $PbSn(PO_4)I$ (c).

Figure S5. The thermal analysis curves of PbZn(PO₄)F, PbSn(PO₄)Br and PbSn(PO₄)I.

Figure S6. SHG density map of d_{33} in the valence band (left) and the conduction band (right) of PbZn(PO₄)F.

Figure S7. The band structures of $PbZn(PO_4)F$ (a), $PbSn(PO_4)Cl$ (b), $PbSn(PO_4)Br$ (c) and $PbSn(PO_4)I$ (d).

References

- 1. J. G. S. C. Fonseca Guerra, G. te Velde, E.J. Baerends, Towards an order-N DFT method, *Theor Chem Acc*, 1998, **99**, 391-403.
- M. D. S. Stewart J. Clark, Chris J. Pickard, Phil J. Hasnip, Matt I. J. Probert, Keith Refson and Mike
 C. Payne, First principles methods using CASTEP, *Z Kristallogr Cryst Mater*, 2005, 220, 567-570.
- 3. J. S. Lin, A. Qteish, M. C. Payne and V. V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials, *Phys. Rev., B Condens Matter*, 1993, **47**, 4174-4180.
- 4. K. B. John P. Perdew, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple., *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- Z. L. Zhihua Li, Yicheng Wu, Peizhen Fu, Zhizhong Wang, and Chuangtian Chen, Crystal Growth, Optical Properties Measurement, and Theoretical Calculation of BPO₄, *Chem. Mater.*, 2004, 16, 2906-2908.
- 6. J. Kobayashi, T. Takahashi, T. Hosokawa and Y. Uesu, A new method for measuring the optical activity of crystals and the optical activity of KH₂PO₄, *J. Appl. Phys.*, 1978, **49**, 809-815.
- L. Li, Y. Wang, B. H. Lei, S. Han, Z. Yang, K. R. Poeppelmeier and S. Pan, A New Deep-Ultraviolet Transparent Orthophosphate LiCs₂PO₄ with Large Second Harmonic Generation Response, *J. Am. Chem. Soc.*, 2016, **138**, 9101-9104.
- Z. Bai, C.-L. Hu, L. Liu, L. Zhang, Y. Huang, F. Yuan and Z. Lin, KMg(H₂O)PO₄: A Deep-Ultraviolet Transparent Nonlinear Optical Material Derived from KTiOPO₄, *Chem. Mater.*, 2019, **31**, 9540-9545.
- Y. Zhou, L. Cao, C. Lin, M. Luo, T. Yan, N. Ye and W. Cheng, AMgPO₄·6H₂O (A = Rb, Cs): strong SHG responses originated from orderly PO₄ groups, *J. Mater. Chem. C*, 2016, 4, 9219-9226.
- G. Han, Q. Liu, Y. Wang, X. Su, Z. Yang and S. Pan, Experimental and theoretical studies on the linear and nonlinear optical properties of lead phosphate crystals LiPbPO₄, *Phys. Chem. Chem. Phys.*, 2016, **18**, 19123-19129.
- L. Qi, Z. Chen, X. Shi, X. Zhang, Q. Jing, N. Li, Z. Jiang, B. Zhang and M.-H. Lee, A₃BBi(P₂O₇)₂ (A = Rb, Cs; B = Pb, Ba): Isovalent Cation Substitution to Sustain Large Second-Harmonic Generation Responses, *Chem. Mater.*, 2020, **32**, 8713-8723.
- M. Wen, H. Wu and X. Wu, Influence of Cation on the Anion Frameworks and Properties of Four Lead Phosphates, A₂PbBi₂(PO₄)₂(P₂O₇) (A = Rb, Cs) and A₂PbP₂O₇ (A = K, Rb), *Inorg. Chem.*, 2020, 59, 2945-2951.
- H. Yu, J. Young, H. Wu, W. Zhang, J. M. Rondinelli and P. S. Halasyamani, M₄Mg₄(P₂O₇)₃ (M = K, Rb): Structural Engineering of Pyrophosphates for Nonlinear Optical Applications, *Chem.*. *Mater.*, 2017, **29**, 1845-1855.
- P. Shan, T. Sun, H. Chen, H. Liu, S. Chen, X. Liu, Y. Kong and J. Xu, Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO₃)₄, a possible deep-ultraviolet nonlinear optical crystal, *Sci. Rep.*, 2016, 6, 25201.
- 15. T. Sun, P. Shan, H. Chen, X. Liu, H. Liu, S. Chen, Y. a. Cao, Y. Kong and J. Xu, Growth and properties of a noncentrosymmetric polyphosphate CsLa(PO₃)₄ crystal with deep-ultraviolet transparency, *CrystEngComm*, 2014, **16**, 10497-10504.
- J. Feng, C. L. Hu, Y. Lin and J. G. Mao, BaPO₃Cl: a Metal Phosphate Chloride with Infinite [PO₃]_∞
 Chains, *Inorg. Chem.*, 2019, **58**, 73-76.
- 17. Z. Bai, L. Liu, L. Zhang, Y. Huang, F. Yuan and Z. Lin, K₂SrP₄O₁₂: a deep-UV transparent cyclophosphate as a nonlinear optical crystal, *Chem. Commun. (Camb.)*, 2019, **55**, 8454-8457.

- 18. X. R. Yang, X. Liu, L. Chen and L. M. Wu, A deep ultraviolet transparent birefringent monofluorophosphate: Cd_{2.5}(NH₄)₂(PO₃F)₃Cl·2H₂O, *Z* Anorg Allg Chem, 2022, **648**.
- X.-R. Yang, X. Liu, Z. Wang, X.-B. Deng, H.-J. Lu, Y.-J. Li, X. Long, L. Chen and L.-M. Wu, Na_{1.5}Rb_{0.5}PO₃F·H₂O: synthesis, properties, and stepwise reconstruction of the hydrogen bond network, *Inorg. Chem. Front.*, 2021, **8**, 4544-4552.
- W. Zhang, W. Jin, M. Cheng, R. Zhang, Z. Yang and S. Pan, From centrosymmetric to noncentrosymmetric: effect of the cation on the crystal structures and birefringence values of (NH₄)_{n-2}AE(PO₂F₂)_n (AE = Mg, Sr and Ba; n = 2, 3 and 4), *Dalton Trans.*, 2021, **50**, 10206-10213.