Supporting Information

Significant Surface-enhanced Raman Scattering Effect of Ag Loaded Iron Hydroxide Enabled by Coordination Effect between Ag and Hydroxyl Group

Xiangyu Meng^{‡a}, Jian Yu^{‡a}, Jingjing Wu^a, Yuening Wang^a, Xiaoyu Song^a, Ziyan Xu^a, Anran Li^{*a}, Lin Qiu^{*c}, Jie Lin^{*b}, and Xiaotian Wang ^{*a}

^a School of Chemistry, and School of Engineering Medicine, Beijing Advanced

Innovation Center for Big Data-Based Precision Medicine, Beihang University,

Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine

(Beihang University), Ministry of Industry and Information Technology.

^b Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology

and Engineering, CAS, 1219 Zhongguan West Road, Ningbo 315201, P. R. China.

° School of Energy and Environmental Engineering, University of Science and

Technology Beijing, Beijing 100083, China.

[‡] Co-first author. These two authors contributed equally to this manuscript.

*Corresponding authors. E-mail:

wangxt@buaa.edu.cn (Xiaotian Wang);

qiulin@ustb.edu.cn (Lin Qiu)

linjie@nimte.ac.cn (Jie Lin)

rananli@buaa.edu.cn (Anran Li)

Table S1. List of abbreviations.

Table S2. Raman spectral peak assignments of MB, CV, and 4ATP.

Figure S1. XRD of Ag NPs and Ag/ M hydroxide (M = Fe, Co, Ni) complex.

Figure S2. TEM image of commercial Ag NPs with the size of 5 nm.

Figure S3. XPS spectra of Fe³⁺, Co²⁺ and Ni²⁺ in Ag/Fe(OH)₃, Ag/Co(OH)₂ and

Ag/Ni(OH)₂, respectively.

Figure S4. Absorption spectra of Fe(OH)₃ and Ag/Fe(OH)₃.

Figure S5. TEM image of Ag/Fe(OH)₃ with different mass fraction of Ag.

Figure S6. The band gap of Ag/Fe(OH)₃ with different content of Ag based on the Kubelka-Munk formula.

Figure S7. (a) SERS intensity of 4-ATP with different concentration absorbed on 50% Ag/Fe(OH)₃. (b) SERS spectra of 4-ATP (10^{-4} M) absorbed on 50% Ag/Fe(OH)₃ and pure molecule (10^{-1} M) without substrate.

Number	Full forms	Abbreviation
1	Surface-enhanced Raman Scattering spectroscopy	SERS
2	P-aminoazobenzene	PAAB
3	Localized surface plasmon resonance	LSPR
3	Photo-induced charge transfer	PICT
4	Enhancement factor	EF
5	Electromagnetic enhancement mechanism	EM
6	Chemical enhancement mechanism	СМ
7	Finite-difference time-domain	FDTD
8	X-ray powder diffraction	XRD
9	Transmission electron microscopy	TEM
10	X-ray pho-ton spectroscopy	XPS
11	Ultraviolet photoelectron spectroscopy	UPS
12	Selected area electron diffraction	SAED
13	Rhodamine 6G	R6G
14	Crystal violet	CV
15	4-aminophenylthiol	4-ATP
16	Conduction band	CB
17	Valence band	VB
18	Highest occupied molecular orbital	HOMO
19	Lowest unoccupied molecular orbital	LUMO

Table S1. List of abbreviations.

	Raman shift (cm ⁻¹)	Assignments
R6G	1620	v(C-C) ring
	1513	$v_{asym}(C-C)$
	1430	$v_{asym}(C-N)$
	1396	α(C-H)
	1307	α(C-H)
	1151	β(C-H)
	1181	ν(C-C)
	1035	β(C-H)
	677	ү(С-Н)
CV	1615	ν(C-C) ring
	1588	v(C-C) ring
	1532	ν(C-H) / δ(CH ₃)
	1447	$\gamma_{asym}(CH_3)$
	1396	ν(C-H)
	1180	v(C-H) ring
	918	δ(C-C) ring
	818	v(C-H) ring
	728	ν(C-N)
4-ATP	1590	v(C-C) ring
	1575	v(C-C) ring

Table S2. Raman spectral peak assignments of MB, CV, and 4ATP.

1425	$\delta(CH) + \nu(C-C)$
1393	δ (C-H) + ν (C-C)
1142	δ(C-H)
1088	v(C-S)

v, stretching; α , in-plane deformation; β , in-plane bending; γ , out-of-plane bending; δ , skeletal deformation.

Figure S1. XRD of Ag NPs and Ag/M hydroxide (M = Fe, Co, Ni) complex.

Figure S2. TEM image of commercial Ag NPs.

Figure S3. XPS spectra of Fe^{3+} , Co^{2+} and Ni^{2+} in Ag/Fe(OH)₃, Ag/Co(OH)₂ and Ag/Ni(OH)₂, respectively.

Figure S4. Absorption spectra of Fe(OH)₃ and Ag/Fe(OH)₃.

Figure S5. TEM image of $Ag/Fe(OH)_3$ with different mass fraction of Ag.

Figure S6. The band gap of Ag/Fe(OH)₃ with different content of Ag based on the Kubelka-Munk formula.

Calculation of Enhancement Factor

Figure S7 present the SERS intensity of 4-ATP with different concentration. The concentration of 10^{-4} M is selected to calculate the enhancement factor (EF) to avoid the error caused by supersaturated adsorption. EF for 50% Ag/Fe(OH)₃ is calculated by the following formula:

$$EF = \frac{I_{SERS}/N_{SERS}}{I_0/N_0} \tag{1}$$

where I_{SERS} and I_0 is the intensity of vibration peaks of probe molecule absorbed on the substrate and without substrate (1590 cm⁻¹ for 4-ATP). N_{SERS} and N₀ is the number of probe molecules on substrate and without the substrate, respectively. In this experiment, 5uL of 4-ATP solution (0.1 M) was dropped onto the Si wafer (0.4×0.4 cm⁻²). N₀ is estimated by:

$$\begin{split} N_0 = & 5 \ \mu L \times 0.1 \ mol/L \times 6.02 \times 10^{23} \ mol^{-1} \times 1.87 \ \mu m^2 / 0.16 cm^2 \\ N_{SERS} = & \sigma \times 1.87 \ \mu m^2 \times 6.02 \times 10^{23} \ mol^{-1} \end{split}$$

The laser area is calculated to be $1.87 \ \mu m^2$ for the laser of 633 nm, and the area of Si wafer is 0.16 cm², N₀ is estimated to 3.51×10^{10} . σ is the density of probe molecule adsorbed onto substrate, which is estimated to ~0.5 nM cm⁻². Therefore, N_{SERS} is calculated to be 5.63×10^6 for 4-ATP and PAAB. I_{SERS}=11918 and I₀=60 for 4-ATP. Substituting these values into Eq. (1), EF are calculated to be 1.23×10^6 for 4-ATP.

Figure S7. (a) SERS intensity of 4-ATP with different concentration absorbed on 50% Ag/Fe(OH)₃. (b) SERS spectra of 4-ATP (10^{-4} M) absorbed on 50% Ag/Fe(OH)₃ and pure molecule (10^{-1} M) without substrate.