Supporting Information for

A Stable Nanotubular Metal–Organic Framework as Heterogeneous Catalyst for Efficient Chemical Fixation of CO₂

Xueqin Tian,^a Xuefu Hu,^b Wenjing Zhao,^a Pengyan Wu,^{*a} Yan Wu,^a Xin Xie,^a Fangmin Huang,^{*a} Jinwen Cheng^a and Jian Wang^{*a}

^a School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green

Synthetic Chemistry for Functional Materials, Jiangsu Normal University,

Xuzhou, 221116, P. R. China.

^b Department of Chemistry, Southern University of Science and Technology,

Shenzhen, Guangdong 518055, P. R. China

E-mail address: wpyan@jsnu.edu.cn; huangfm@jsnu.edu.cn; wjian@jsnu.edu.cn

Materials and Characterizations

Unless otherwise specified, all reagents and solvents are AR grade and do not need further purification when used. 4,4',4"-tricarboxyltriphenylamine (H₃tca) was synthesized according to the literature methods.^{S1} Cd(NO₃)₂·4H₂O was purchased from Shanghai Fourth Chemical Reagent Company (China). The epoxides (epichlorohydrin, epibromohydrin, glycidol, allyl glycidyl ether, butyl glycidyl ether, glycol diglycidyl ether, 2-(phenoxymethyl) oxirane, 2-((4-nitrophenoxy)methyl) oxirane, 2-((4-methoxyphenoxy)methyl)oxirane, 1,3-bis(oxiran-2-ylmethoxy)benzene) and Tetrabutylammonium Bromide (TBABr) were purchased from Beijing Innochem Science & Technology Co., Ltd.

JASCO FT/IR-430 machine was used to test FT-IR spectra of the sample KBr pellets. Rigaku D/max-2400 X-ray powder diffractometer (Japan) was used to test X-Ray powder diffraction (XRD) patterns of the samples, its radiation wavelength was Cu-K α ($\lambda = 1.5405$ Å). Bruker-400 spectrometer was used to test ¹H NMR spectra, its internal standard was Me₄Si. The C, H and N elemental analyses were tested on a Vario EL III elemental analyzer. Hitachi SU8010 was used to test the morphologies of the prepared samples treated by Pt sputtering for 90 s by a Field Emission Scanning Electron Microscopy (SEM). FT-IR spectra were recorded as KBr pellets on JASCO FT/IR-430. X-ray photoelectron spectroscopy (XPS) experiments were performed with a PHI QUANTUM2000 surface analysis instrument. Rigaku Thermo plus TG-8120 instrument was used to test thermogravimetric analysis (TGA), its ramp rate was 5 °C/min and its flow was static air. Leeman PROFILE SPEC inductively coupled plasma mass spectrometry (ICP-MS) was used to test the contents of metal ions.

Synthesis of Cd-TCA'

Cd-TCA was firstly soaked in a methanol solution, and exchanged with the fresh methanol every 20 minutes. The removal of DMA molecules was confirmed through FT-IR. Then the compound was further desolvated under vacuum at 423 K for 12 h to afford the activated samples Cd-TCA'.

Crystallographic studies

A suitable single crystal was mounted on a Bruker APEX II CCD diffractometer, whose monochromator is graphite and radiation is Mo–K α ($\lambda = 0.71073$ Å). The direct methods was used for the solution of the structure and full-matrix least-squares cycles was used for the refinement in SHELXTL version 6.1. A riding model was used for the refinement of hydrogen atoms. SQUEEZE program within PLATON was used to remove disorder solvent molecules.

 Table S1. Crystallographic data for Cd-TCA

formula	C37H48N5O10Cd1.5
formula weight	891.40
crystal system	trigonal
space group	R-3c
<i>a</i> /Å	41.5946(11)
b/Å	41.5946(11)
c /Å	28.0270(11)
γ (°)	120
$V/Å^3$	41993(3)
Z	36
$ ho_{ m calcd}/{ m g~cm^{-3}}$	1.269
μ/mm^{-1}	5.959
Collected reflections	8233
unique reflections	6820
$R_1\left[I>2\sigma(I)\right]$	0.1074
wR_2 (all data)	0.3543
CCDC	2193251

Cd-TCA

Cd(1)–O(5A)	2.239(4)	Cd(1)–O(5B)	2.239(4)
Cd(1)–O(4C)	2.257(3)	Cd(1)–O(4D)	2.257(3)
Cd(1)–O(2E)	2.274(4)	Cd(1)–O(2)	2.274(4)
Cd(2)–O(6)	1.936(4)	Cd(2)–O(1F)	1.938(4)
Cd(2)–O(7)	1.982(5)	Cd(2)–O(3G)	2.032(3)
Cd(2)–O(4G)	2.416(4)	Cd(2)–C(1G)	2.540(5)
O(5A)Cd(1)O(5B)	179.989(1)	O(5A)Cd(1)O(4C)	87.06(15)
O(5B)-Cd(1)-O(4C)	92.95(14)	O(5A)-Cd(1)-O(4D)	92.94(14)
O(5B)-Cd(1)-O(4D)	87.05(15)	O(4C)Cd(1)O(4D)	180.0
O(5A)Cd(1)O(2E)	92.19(15)	O(5B)–Cd(1)–O(2E)	87.81(15)
O(4C)Cd(1)O(2E)	89.15(14)	O(4D)–Cd(1)–O(2E)	90.85(14)
O(5A)Cd(1)O(2)	87.81(15)	O(5B)–Cd(1)–O(2)	92.19(15)
O(4C)Cd(1)O(2)	90.85(14)	O(4D)Cd(1)O(2)	89.14(14)
O(2E)Cd(1)O(2)	180.0	O(6)–Cd(2)–O(1F)	135.76(16)
O(6)-Cd(2)-O(7)	96.09(19)	O(1F)Cd(2)O(7)	94.6(2)
O(6)-Cd(2)-O(3G)	108.92(16)	O(1F)Cd(2)O(3G)	108.35(16)
O(7)–Cd(2)–O(3G)	107.6(2)	O(6)-Cd(2)-O(4G)	89.35(16)
O(1F)Cd(2)O(4G)	90.68(17)	O(7)–Cd(2)–O(4G)	165.65(19)
O(3G)–Cd(2)–O(4G)	58.04(14)	O(6)-Cd(2)-C(1G)	99.18(16)
O(1F)–Cd(2)–C(1G)	101.98(18)	O(7)–Cd(2)–C(1G)	136.5(2)
O(3G)–Cd(2)–C(1G)	28.94(17)	O(4G)Cd(2)C(1G)	29.16(16)

Table S2 Selected bond lengths (Å) and angles (°) for Cd-TCA.

Symmetry code A: 2/3+x-y, 4/3-y, -1/6-z; B: 1-x+y, y, -1/2+z; C: 2-x, 1-x+y, -1/2-z; D: -1/3+x, 1/3+x-y, -1/6+z; E: 5/3-x, 4/3-y, -2/3-z; F: 5/3-y, 1/3+x-y, 1/3+z; G: 1-x+y, y, 1/2+z.

Figure S1. The asymmetric unit of Cd-TCA. Atomic scheme: Cd, green; O, red; C, gray; N, blue; H, light green.

Figure S2. (a) The Cd coordination environment in Cd-TCA. (b) The μ_6 - η^1 : η^2 coordination mode of the tca³⁻ ligand.

Figure S3. The "crown ether"-like hexagonal metallo-macrocycles extend infinitely along the ab plane with adjacent channels sharing the corrugated walls.

Figure S4. FT-IR of Cd-TCA and Cd-TCA'.

Figure S5. Optimized catalyst dosage and reaction temperature experiments of coupling of epichlorohydrin with CO₂.

Figure S6. SEM image of Cd-TCA' (left) and Cd-TCA' after 5 cycles of catalysis (right).

Figure S7. FT-IR spectra of Cd-TCA' (black), Cd-TCA' impregnated with epichlorohydrin (red) and epichlorohydrin (green).

Entry	Catalyst	T (K)	T (hr)	Yield(%)	TON	TOF	Ref.
1	ZIF-8-HS	363	24	98	/	/	S2
2	PNU-25-NH ₂	338	18	92	1380	76.7	S3
3	IL@MIL-101-SO ₃ H	363	48	98	/	/	S4
4	polyILs@MIL-101	343	24	94	/	/	S5
5	UiO-67-IL	363	3	99	/	/	S 6
6	Meim-UiO-66	393	24	100	192	8	S7
7	1	343	15	99	200	13	S 8
8	Co(II)-MOF	353	9	99	/	/	S9
9	Cu(II)-MOF	343	16	99	4	0.25	S10
10	Ni-MOF-1a	333	6	97	38.8	6.5	S11
11	1	343	15	100	200	13.3	S12
12	1	333	10	97	194	19.4	S13
13	1	343	12	100	80	6.7	S14
14	FJI-C10	333	24	87	494	20.6	S15
15	1	323	12	98	19.6	1.63	S16
16	F-NH2-Zr(H2L)	333	48	85	850	17.7	S17
17	1	333	12	99	247.5	20.6	S18
18	Cd-TCA'	333	6	100	1833	306	This work

Table S3. Comparison with different MOFs catalysts in the cyclic addition of CO₂ and epichlorohydrin under similar conditions (0.1 MPa CO₂).

Entry	Epoxides	Molecular Size
1	cl	446
2	Br	4.6Å
3	HO	4.1 Å
4		8.2 Å
5		9.9 Å
6		10.9 Å
7		9.4 Å
8		ней
9	O2N O	10.2 Å
10		12.0 Å

Table S4. The molecular size of selected substrates.

Reference

S1. J. Wang, C. He, P. Wu, J. Wang and C. Duan, J. Am. Chem. Soc. 2011, 133, 12402-12405.

- S2. Z. Qin, H. Li, X. Yang, L. Chen, Y. Li, K. Shen, *Appl. Catal. B Environ.*, 2022, 307, 121163.
- S3. J. Kurisingal, Y. Rachuri, Y. Gu, R. Chitumalla, S. Vuppala, J. Jang, K. K. Bisht,
 E. Suresh, D.-W. Park, ACS Sustainable Chem. Eng., 2020, 8, 10822–10832.
- S4. Y. Sun, H. Huang, H. Vardhan, B. Aguila, C. Zhong, J. Perman, A. Al-Enizi, A. Nafady, S. Ma, ACS Appl. Mater. Interfaces, 2018, 10, 27124–27130.
- S5. M. Ding, H.-L. Jiang, ACS Catal., 2018, 8, 3194–3201.
- S6. L. Ding, B. Yao, W. Jiang, J. Li, Q. Fu, Y. Li, Z. Liu, J. Ma, Y. Dong, *Inorg. Chem.*, 2017, 56, 2337–2344.
- S7. J. Liang, R.-P. Chen, X.-Y. Wang, T.-T. Liu, X.-S. Wang, Y.-B. Huang, R. Cao, Chem. Sci., 2017, 8, 1570–1575.
- S8. Q.-Q. Zhu, W.-W. Zhang, H.-W. Zhang, Y. Yuan, R. Yuan, F. Sun, H. He, *Inorg. Chem.*, 2019, **58**, 15637–15643.
- S9. W. Song, S. Song, X. Feng, Q. Yu, X. Dong, M, Chen, J. Chem. Sci., 2020, 132,
 85.
- S10. A.K. Gupta, N. Guha, S. Krishnan, P. Mathur, D.K. Rai, J. CO₂ Util., 2020, **39**, 101173.
- S11. J. Li, W.-J. Li, S.-C. Xu, B. Li, Y. Tang, Z.-F. Lin, *Inorg. Chem. Commun.*, 2019, 106, 70–75.

- S12. Q.-Q. Zhu, W.-W. Zhang, H.-W. Zhang, Y. Yuan, R. Yuan, F. Sun, H. He, *Inorg. Chem.*, 2019, **58**, 15637–15643.
- S13. V. Gupta, S. K. Mandal, Inorg. Chem., 2020, 59, 4273–4281.
- S14. H. Xu, C.-S. Cao, H.-S. Hu, S.-B. Wang, J.-C. Liu, P. Cheng, N. Kaltsoyannis, J.
- Li, B. Zhao, Angew. Chem. Int. Ed., 2019, 58, 6022-6027.
- S15. J. Liang, Y.-Q. Xie, X.-S. Wang, Q. Wang, T.-T. Liu, Y.-B. Huang, R. Cao, Chem. Commun., 2018, 54, 342–345.
- S16. W. Qiao, T. Song, B. Zhao, Chin. J. Chem., 2019, 37, 474-478.
- S17. X. Sun, L. Shi, H. Hu, H. Huang, T. Ma, Adv. Sustainable Syst., 2020, 4, 2000098.
- S18. W.-M. Wang, W.-T. Wang, M.-Y. Wang, A.-L. Gu, T.-D. Hu, Y.-X. Zhang,Z.-L. Wu, *Inorg. Chem.*, 2021, 60, 9122–9131.