Electronic Supplementary Information (ESI)

CX-5461-inspired monofunctional platinum RNA polymerase I selective inhibitors with selective lethality in BRCA1-deficient cancer cells

Zhen-Lei Zhang^{a,1}, Rui Rong^{a,1}, Xuan-Lin Ren^a, Ling-Wen Xu^a, Wen-Jing Lian^a, Xin Qiao^{a,*}, Jing-Yuan Xu^{a,b,*}

^a Department of Chemical Biology and Tianjin Key Laboratory on Technologies
 Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy,
 Tianjin Medical University, Tianjin 300070, China.

^b Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China.

¹ These authors contributed equally.

*Corresponding author:

E-mail: qiaoxin@tmu.edu.cn (X. Qiao), xujingyuan@tmu.edu.cn (J.-Y. Xu).

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃.

Figure S2. ¹H NMR spectrum of compound 3 in CDCl₃.

Figure S3. ¹H NMR spectrum of compound 4a in CDCl₃.

Figure S4. ¹H NMR spectrum of compound 4b in CDCl₃.

Figure S5. ¹H NMR spectrum of compound Q1 in CDCl₃.

Figure S6. ¹³C NMR spectrum of compound Q1 in CDCl₃.

	Retention Time	Peak area	Concentration (%)
1	9.101	1887.3	95.504
2	9.99	46	1.304
3	11.204	48	2.405
4	11.583	15.7	0.787
Total		1997	100.000

Figure S7. Reverse-phase HPLC trace of compound Q1.

Figure S8. ESI-MS spectrum of **Q1** recorded in positive-ion mode. Characteristic molecular and fragment ions: [M+H]⁺: 465.2.

Figure S9. ¹H NMR spectrum of compound Q2 in CDCl₃.

Figure S10. ¹³C NMR spectrum of compound Q2 in CDCl₃.

	Retention Time	Peak area	Concentration (%)
1	9.47	1716.5	98.999
2	11.576	17.4	1.001
Total		1733.9	100.000

Figure S11. Reverse-phase HPLC trace of compound Q2.

Figure S12. ESI-MS spectrum of **Q2** recorded in positive-ion mode. Characteristic molecular and fragment ions: [M+H]⁺: 479.2.

Figure S13. ¹H NMR spectrum of compound P1 in D₂O.

Figure S14. ¹H NMR spectrum of compound P1-Q1 in DMSO-*d*₆.

Figure S15. ¹³C NMR spectrum of compound P1-Q1 in DMSO- d_6 .

	,
275	
250	E Contraction of the second
225	
200-	
175	
150-	
125	
100	
75	
50	
25	39 39 39 39 39 39 39 39 39 39 39 39 39 3
0	
0.0	1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 17.0 180 190 200 min

	Retention Time	Peak area	Concentration (%)
1	3.316	4825	0.154
2	3.739	22550	0.718
3	11.396	3084313	98.237
4	11.925	3519	0.112
5	12.352	8709	0.277
6	12.686	15743	0.501
Total		3139659	100.000

Figure S16. Reverse-phase HPLC trace of compound P1-Q1.

Figure S17. High-resolution ESI-MS spectrum of **P1-Q1** recorded in positive-ion mode. Characteristic molecular and fragment ions: [M]⁺: 770.2109.

Figure S18. ¹H NMR spectrum of compound P1-Q2 in DMSO-*d*₆.

Figure S19. ¹³C NMR spectrum of compound P1-Q2 in DMSO- d_6 .

m).	□ □ □ □ - 91021cd □ □ - 9102
300-	
275	
250	
225	
200	
175	
150-	
125-	
100-	
75-	
50-	
25	e 32 80 10 10 10 10 10 10 10 10 10 10 10 10 10
•	
1 0.0	1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 15.0 17.0 18.0 19.0 20.0 mm

	Retention Time	Peak area	Concentration (%)
1	3.319	4187	0.116
2	3.754	23872	0.662
3	11.000	21122	0.586
4	11.153	32261	0.895
5	11.561	3487863	96.737
6	12.051	12306	0.341
7	12.664	23916	0.663
Total		3605527	100.000

Figure S20. Reverse-phase HPLC trace of compound P1-Q2.

Figure S21. High-resolution ESI-MS spectrum of P1-Q2 recorded in positive-ion mode. Characteristic molecular and fragment ions: $([M + H]^{2+})$: 784.2259.

Figure S22. Stability of P1-Q1 in PBS.

Figure S23. Stability of P1-Q2 in PBS.

Figure S24. Representative cell images of global transcription in A549 cells. After 1 h EU incorporation, A549 cells were treated with CX-5461, cisplatin, P1-Q1, P1-Q2, Q1, or Q2 at 10 μ M for 4 h, respectively. Nucleolar protein NCL was stained by immunofluorescence detection. DAPI was used to label the nucleus.

Figure S25. Disruption of 47S pre-rRNA expression in A549 cells detected by fluorescent *in situ* hybridization (FISH). Probes: 5'-ETS tagged by Cy5 (red), ITS2 tagged by Cy3 (green). Treatment conditions: cisplatin, CX-5461, **P1-Q1**, **P1-Q2**, **Q1**, or **Q2** at 10 μM for 3 h, respectively. DAPI was used to label the nucleus.

Figure S26. Western blot image shows knockdown of BRCA1 in A549 cells. Three independent lentiviral shRNAs against human BRCA1 were established and infected to A549 cells. The BRCA1 knockdown efficiency was verified by western blot. According to the western blot results, A549 cells that stably expressed lentiviral shRNA3 (against BRCA1) were selected as the model for mechanism studies.

Figure S27. Un-cropped western blotting images of Figure 8.

 Table S1. shRNA sequence information

	Forward (5'-3')	Reverse (5'-3')
shRNA1	CCGGCCCTTCTAAATGCCCATCA	AATTCAAAAACCCTTCTAAATGCCC
	TTCTCGAGAATGATGGGCATTTA	ATCATTCTCGAGAATGATGGGCATT
	GAAGGGTTTTTG	TAGAAGGG
shRNA2	CCGGGAGAATCCTAGAGATACT	AATTCAAAAAGAGAATCCTAGAGA
	GAACTCGAGTTCAGTATCTCTAG	TACTGAACTCGAGTTCAGTATCTCT
	GATTCTCTTTTTG	AGGATTCTC
shRNA3	CCGGGCCTACAAGAAAGTACGA	AATTCAAAAAGCCTACAAGAAAGT
	GATCTCGAGATCTCGTACTTTCT	ACGAGATCTCGAGATCTCGTACTTT
	TGTAGGCTTTTTG	CTTGTAGGC