# **Electronic Supporting Information for**

# Zeolite analogs based on oxysulfidometalate supertetrahedral clusters via Coulombic interactions

Ming-Bu Luo,<sup>a</sup> Jun-Li chen,<sup>a</sup> Shan-Lin Huang,<sup>a</sup> Xuechou Zhou,<sup>d</sup> Er-Xia Chen\*,<sup>a,b,c</sup> and

Qipu Lin\*<sup>,a,c</sup>

<sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

<sup>b</sup>Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China

<sup>c</sup>State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China

<sup>d</sup>School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China

\*Corresponding Author: Email: exchen@fjirsm.ac.cn; linqipu@fjirsm.ac.cn

## **Table of Contents**

Section S1: General Methods

Section S2: Synthetic Procedures

Section S3: Electrospray Ionization Mass Spectrometry (ESI–MS)

Section S4: Crystallographic Data

Section S5: Powder X-Ray Diffraction (PXRD)

Section S6: Fourier-Transform Infrared (FT–IR) Spectroscopy

Section S7: Thermogravimetric Analysis (TGA)

Section S8: Tauc Plots from Ultraviolet Visible (UV–Vis) Diffuse Reflection

Spectroscopy (DRS)

Section S9: Scanning Electron Microscopy (SEM) and X-ray Energy

**Dispersive Spectroscopy (EDS)** 

Section S10: Proton Conduction

Section S11: References

#### Section S1: General Methods

**Chemicals:** *n*-Butyltin trichloride (<sup>*n*</sup>BuSnCl<sub>3</sub>, 98%), indium acetate hydrate  $(In(OAc)_3 \cdot 6H_2O, 99.9\%)$ , zinc acetate dihydrate  $(Zn(oac)_2 \cdot 2H_2O, 99.9\%)$ , lanthanum nitrate hexahydrate  $(La(NO_3)_3 \cdot 6H_2O, 99\%)$ , stannous chloride dihydrate  $(SnCl_2 \cdot 2H_2O, 98\%)$ , thiourea  $((NH_2)_2CS, 99\%)$ , triethylene glycol (TEG, 98%), *N*-methyl-2-pyrrolidone (NMP, 98%), tetramethylguanidine (TMG, 99%), dibenzylamine (DBA, 99%), 1-methylpiperidine (MPI, 98%), 2-amino-1-butanol (98%) were acquired from Aladdin Chemical Reagent Shanghai. All chemicals were used as supplied without further purification.

**Instrumentation:** Energy dispersive spectroscopy (EDS) analysis was performed on scanning electron microscope (SEM) coupled with Oxford INCA system. Elemental analysis (EA) data was collected on a Vario EL-Cube instrument. Inductively coupled plasma optical emission spectroscopy (ICP–OES) was carried out an Ultima-2 spectrometer device. The powder X-ray diffraction (PXRD) data of the crystals were collected on a Rigaku Mini Flex II diffractometer using Cu K $\alpha$  radiation ( $\lambda$  = 1.54056 Å) operated at 30 kV and 10 mA under ambient conditions. The solid-state ultraviolet visible (UV-Vis) diffuse reflection spectroscopy (DRS) were recorded at room temperature with BaSO<sub>4</sub> as a reference substance (100% reflectance) on a PerkinElmer Lamda-950 UV spectrophotometer and scanned at 250–800 nm. Thermo gravimetric analysis (TGA) was performed on a Mettler Toledo TGA/SDTA 851e analyzer in air atmosphere with a heating rate of 10 °C min<sup>-1</sup> under N<sub>2</sub> flow from room temperature to 800 °C. Fourier transform infrared (FT-IR) spectra were acquired using KBr pellets on a Nicolet Magna 750 FT-IR spectrometer between 400–4000 cm<sup>-1</sup> in attenuated total reflection. Electrospray ionization-mass (ESI-MS) measurements were performed on an Impact II UHR-TOF (Bruker).

**Crystallographic Characterization:** The single crystal X-ray diffraction measurement was performed on a ROD, Synergy Custom system, HyPix diffractometer with micro-focus metaljet K $\alpha$  ( $\lambda$  = 1.34050 Å) radiation at 100 K. The structures were solved by direct method and refined by full-matrix least-squares on  $F^2$  using the olex2.<sup>1</sup> All the

non-hydrogen atoms are refined anisotropically. Contributions to scattering due to disordered solvent molecules were removed using the SQUEEZE routine of PLATON.<sup>2</sup> The structures were then refined again using the data generated.

**Impedance analysis:** The samples were dried at 60 °C in oven overnight and then put into a home-made mold with a diameter of 0.4 cm to get circular pellets, whose thickness was measured by a micrometer screw. Two sides of the pellets were smeared by silver colloid, and further connected by copper wires, respectively. The proton conductivities were evaluated by using a Zahner (IM6) electrochemical impedance spectrometer, over a frequency range from 100 mHz to 10 MHz, under varying temperatures (room temperature to 50 °C) and different relative humidity (75% to 98% RH). The proton conductivity was calculated by using the following equation

$$\sigma = \frac{l}{SR}$$

Where  $\sigma$  is the conductivity (S cm<sup>-1</sup>), l is the thickness (cm) of the pellet, S is the cross-sectional area (cm<sup>2</sup>) of the pellet and R is the bulk resistance ( $\Omega$ ). The activation energy ( $E_a$ ) was calculated from the following equation

$$\ln \sigma_T = \ln \sigma_0 - \frac{E_a}{RT}$$

Where  $\sigma$  is the conductivity (S cm<sup>-1</sup>), *K* is the Boltzmann constant (eV K<sup>-1</sup>) and *T* is the temperature (K).

#### Section S2: Synthetic Procedures

#### Synthesis of T3-MEP $[Sn_{10}S_{20}O_4]$ ·1.5LaCl<sub>3</sub>· $[C_5H_9NOH]_8$ · $[C_5H_9NO]_2$ · $[C_6H_{14}O_4]_2$

<sup>n</sup>BuSnCl<sub>3</sub> (0.1 mL), SnCl<sub>2</sub>·2H<sub>2</sub>O (0.35 mmol, 79.0 mg), La(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.30 mmol, 129.9 mg), thiourea (2 mmol, 152.2 mg), NMP (3.0 mL), TEG (2.0 mL) were mixed in a 23-mL Teflon-lined stainless autoclave and stirred for 10 min. Then the vessel was sealed and heated at 120 °C for 8 days. Colorless octadecahedron-shaped crystals (yield: 62 mg, ca. 18.35% base on <sup>n</sup>BuSnCl<sub>3</sub> and SnCl<sub>2</sub>·2H<sub>2</sub>O) with pure phase were obtained after 3 days in room temperature and washed with ethanol for several times. Experimental EA data: C 20.15%, H 3.3%, N 3.89%, S 16.66%; calculated EA data: C 20.9%, H 3.53%, N 3.93%, S 18.01%. Experimental ICP data: Sn 33.65%, La 5.47%; calculated ICP data: Sn 33.34%, La 5.85%; IR: v (cm<sup>-1</sup>) = 2925(w), 2868(w), 1643(s), 1512(m), 1461(w), 1410(w), 1311(w), 1260(w), 1227(w), 1175(w), 1124(w), 1069(w), 989(w), 932(w), 895(w), 750(w), 666(w), 559(m), 465(w).

#### Synthesis of T4-MTN [Sn<sub>4</sub>In<sub>12</sub>Zn<sub>4</sub>S<sub>31</sub>O<sub>4</sub>][C<sub>5</sub>H<sub>14</sub>N<sub>2</sub>O]<sub>4</sub>·[C<sub>5</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>

<sup>n</sup>BuSnCl<sub>3</sub> (10 µL), In(OAc)<sub>3</sub>·6H<sub>2</sub>O (0.20 mmol, 80.0 mg), Zn(OAc)<sub>2</sub>·2H<sub>2</sub>O (0.10 mmol, 22.0 mg), thiourea (3 mmol, 228 mg), TMG (1.25 mL), DBA (2.5 mL), H<sub>2</sub>O (1 mL) were mixed in a 23-mL Teflon-lined stainless autoclave and stirred for 20 min. Then the vessel was sealed and heated at 120 °C for 7 days. Colorless or pale-yellow octahedral crystals (yield: 12 mg, ca. 20.63% base on <sup>n</sup>BuSnCl<sub>3</sub>) with pure phase were obtained by filtration after being washed with acetone and water for several times. Experimental EA data: C 9.95%, H 2.91%, N 4.81%, S 25.14%; calculated EA data: C 10.83%, H 2.17%, N 5.06%, S 25.63%. Experimental ICP data: Sn 10.46%, In 30.05%, Zn 4.68%; calculated ICP date: Sn 12.25%, In 35.54%, Zn 6.74%. IR: v (cm<sup>-1</sup>) = 3579(w), 3524(w), 3449(w), 3378(w), 2957(w), 2912(w), 2846(w), 2761(w), 1617(m), 1457(s), 1296(w), 1247(w), 1171(w), 1140(w), 1065(w), 1021(m), 815(m), 669(m), 503(s).

#### Synthesis of T4-DIA $[Sn_4ln_{12}Zn_4S_{31}O_4][C_6H_{14}N]_8 \cdot [C_4H_{13}NO]$

<sup>*n*</sup>BuSnCl<sub>3</sub> (10  $\mu$ L), In(OAc)<sub>3</sub>·6H<sub>2</sub>O (0.20 mmol, 80.0 mg), Zn(OAc)<sub>2</sub>·2H<sub>2</sub>O (0.10 mmol, 22.0 mg), thiourea (3 mmol, 228 mg), MPI (2 mL), 2-amino-1-butanol (1 mL), H<sub>2</sub>O (0.5 mL), were mixed in a 23-mL Teflon-lined stainless autoclave and stirred for 20 min.

Then the vessel was sealed and heated at 120 °C for 7 days. Colorless or pale-yellow octahedral crystals (yield: 34 mg, ca. 55.77% base on *n*BuSnCl<sub>3</sub>) with pure phase were obtained by filtration after being washed with ethanol for several times. Experimental EA data: C 16.59%, H 3.23%, N 2.655%, S 25.4%; calculated EA data: C 15.35%, H 2.85%, N 3.1%, S 24.4%. Experimental ICP data: Sn 10.4%, In 26.18%, Zn 4.58%; calculated ICP data: Sn 11.68%, In 33.9%; Zn 6.43%. IR: *v* (cm<sup>-1</sup>) = 2952(s), 2861(m), 2676(w), 2550(w), 2510(w), 2470(w), 1678(m), 1592(m), 1457(s), 1371(m), 1311(w), 1241(w), 1171(w), 1140(w), 1105(w), 1055(m), 1026(w), 994(w), 966(w), 943(w), 850(w), 689(w), 661(w), 592(w), 541(w), 502(w), 453(w).

#### Synthesis of T4-LON [Sn<sub>4</sub>In<sub>12</sub>Zn<sub>4</sub>S<sub>31</sub>O<sub>4</sub>][C<sub>5</sub>H<sub>14</sub>N<sub>2</sub>O]<sub>5</sub>

<sup>n</sup>BuSnCl<sub>3</sub> (10µL), In(OAc)<sub>3</sub>·6H<sub>2</sub>O (0.20 mmol, 80.0 mg), Zn(OAc)<sub>2</sub>·2H<sub>2</sub>O (0.10 mmol, 22.0 mg), thiourea (3 mmol, 228 mg), TMG (1.25 mL), H<sub>2</sub>O (0.5 mL), were mixed in a 23-mL Teflon-lined stainless autoclave and stirred for 20 min. Then the vessel was sealed and heated at 120 °C for 7 days. Colorless or pale-yellow hexagonal prism crystals (yield: 23 mg, ca. 40.74% base on <sup>*n*</sup>BuSnCl<sub>3</sub>) with pure phase were obtained by filtration after being washed with acetone and water for several times. Experimental EA data: C 8.82%, H 2.7%, N 3.24%, S 26.76%; calculated EA data: C 7.97%, H 1.86%, N 3.72%, S 26.36%. Experimental ICP data: Sn 11.35%, In 35.48%, Zn 5.99%. calculated ICP data: Sn 12.62%, In 36.61%, Zn 6.95%. IR: v (cm<sup>-1</sup>) = 3364 (w), 2952(w), 2912(w), 2847(w), 2747(w), 2405(w), 1652(s), 1457(s), 1381(m), 1246(w), 1171(w), 1140(w), 1076(w), 1045(w), 1015(m), 879(w), 815(m), 694(w), 664(w), 589(w), 504(w).





**Fig. S1** The positive-mode ESI-MS spectrum of T3-MEP in  $CH_3OH$  with addition of LiCl. The main peak at 100.0756 could be assignable to species of protonated *N*-methyl-2pyrrolidone (H<sup>+</sup>NMP, [C<sub>5</sub>H<sub>10</sub>NO]<sup>+</sup>). The minor peaks at 106.0837 and 205.1523 could be assignable to species of [C<sub>5</sub>H<sub>9</sub>NOLi]<sup>+</sup>) and [(C<sub>5</sub>H<sub>9</sub>NO)<sub>2</sub>Li]<sup>+</sup>, respectively.



**Fig. S2** The positive-mode ESI-MS spectrum of T4-DIA in  $CH_3OH$ . The main peak at 100.1117 could be assignable to species of protonated 1-methylpiperidine (H<sup>+</sup>MPI,  $[C_6H_{14}N]^+$ ).



**Fig. S3** The positive-mode ESI-MS spectrum of T4-LON in CH<sub>3</sub>OH. The main peak at 353.2661 could be assignable to species of protonated tetramethylurea (H<sup>+</sup>TMU, where the TMU is derived from the hydrolysis of TMG used) coupled with CH<sub>3</sub>OH and H<sub>2</sub>O (i.e.,  $[C_5H_{13}N_2O(CH_3OH)_4(H_2O)_6]^+$ ).



**Fig. S4** The positive-mode ESI-MS spectrum of T4-MTN in CH<sub>3</sub>OH with addition of LiCl. The main peak at 153.1211 could be assignable to species of protonated tetramethylurea (H<sup>+</sup>TMU, where the TMU is derived from the hydrolysis of TMG used) coupled with H<sub>2</sub>O (i.e.,  $[C_5H_{13}N_2O(H_2O)_2]^+$ ). The minor peak at 158.0822 could be assignable to species of protonated tetramethylguanidine (H<sup>+</sup>TMG) with Li<sup>+</sup> and H<sub>2</sub>O (i.e.,  $[C_5H_{13}N_3(H_2O)_2Li]^+$ ).

# Section S4: Crystallographic Data

| Compound               | T3-MEP       | T4-DIA      | T4-LON     | T4-MTN     |
|------------------------|--------------|-------------|------------|------------|
| Name                   |              |             |            |            |
| a/ Å                   | 50.5840(2)   | 31.1300(16) | 41.1511(8) | 80.4375(6) |
| <i>b/</i> Å            | 50.5840(2)   | 31.1300(16) | 41.1511(8) | 80.4375(6) |
| c/ Å                   | 50.5840(2)   | 31.1300(16) | 36.6354(9) | 80.4375(6) |
| α/°                    | 90           | 90          | 90         | 90         |
| в/°                    | 90           | 90          | 90         | 90         |
| γ/°                    | 90           | 90          | 120        | 90         |
| Volume /Å <sup>3</sup> | 129431.4 (9) | 30167(3)    | 53727(2)   | 520446(7)  |

Table S1 Lattice parameters of tin-based oxychalcogenide clusters by SCXRD

| Table | e <b>S2</b> | Calcula | ation | of   | void  | ratio                | and   | surface | area | of | tin-based | l oxychalcog | enide |
|-------|-------------|---------|-------|------|-------|----------------------|-------|---------|------|----|-----------|--------------|-------|
| clust | ers b       | y PLAT  | ON ar | nd I | Matei | rials S <sup>.</sup> | tudio | 1       |      |    |           |              |       |
|       |             |         |       |      |       |                      |       |         |      |    |           |              |       |

| Compound Name                    | T3-MEP  | T4-DIA  | T4-LON  | T4-MTN  |
|----------------------------------|---------|---------|---------|---------|
| Void ratio/ %                    | 73      | 66.4    | 60.7    | 64.8    |
| surface area $/m^2 \cdot g^{-1}$ | 1615.77 | 1409.85 | 1466.59 | 1491.98 |

| Compounds                             | T3-MEP                         | T4-DIA                     |
|---------------------------------------|--------------------------------|----------------------------|
| CCDC#                                 | 2241505                        | 2241506                    |
| Empirical formula                     | $O_{92}S_{460}Sn_{230}$        | $In_{12}O_4S_{31}Sn_4Zn_4$ |
| Formula weight                        | 43518.3                        | 3171.94                    |
| Temperature/K                         | 100.01(10)                     | 100.00(10)                 |
| Crystal system                        | cubic                          | cubic                      |
| Space group                           | Pm-3n                          | Fd-3m                      |
| a/Å                                   | 50.5840(2)                     | 31.1300(16)                |
| b/Å                                   | 50.5840(2)                     | 31.1300(16)                |
| c/Å                                   | 50.5840(2)                     | 31.1300(16)                |
| α/°                                   | 90                             | 90                         |
| β/°                                   | 90                             | 90                         |
| γ/°                                   | 90                             | 90                         |
| Volume/Å <sup>3</sup>                 | 129431.4(15)                   | 30167(5)                   |
| Z                                     | 2                              | 8                          |
| $\rho_{calc}g/cm^3$                   | 1.117                          | 1.397                      |
| $\mu/mm^{-1}$                         | 13.945                         | 16.492                     |
| F(000)                                | 39192                          | 11488                      |
| Crystal size/mm <sup>3</sup>          | $0.08 \times 0.08 \times 0.08$ | 0.2 	imes 0.2 	imes 0.2    |
| Radiation                             | GaKα                           | GaKα                       |
| Radiation                             | $(\lambda = 1.3405)$           | $(\lambda = 1.3405)$       |
| $2\Theta$ range for data collection/° | 4.802 to 104.98                | 6.982 to 67.854            |
|                                       | $-28 \le h \le 59,$            | $-25 \le h \le 25,$        |
| Index ranges                          | $-27 \le k \le 45,$            | $-20 \le k \le 25,$        |
|                                       | $-54 \le 1 \le 43$             | $-19 \le 1 \le 25$         |
| Reflections collected                 | 161760                         | 7324                       |
| Independent reflections               | 19367 [ $R_{int} = 0.1383$ ,   | 472 [ $R_{int} = 0.0795$ , |
| independent reflections               | $R_{sigma} = 0.0572$ ]         | $R_{sigma} = 0.0180$ ]     |
| Data/restraints/parameters            | 19367/13/322                   | 472/0/33                   |
| Goodness-of-fit on F <sup>2</sup>     | 1.09                           | 1.087                      |
| Final R indexes $[I \ge 2\sigma(I)]$  | $R_1 = 0.1021,$                | $R_1 = 0.0792,$            |
|                                       | $wR_2 = 0.2859$                | $wR_2 = 0.2192$            |
| Final R indexes [all data]            | $R_1 = 0.1104,$                | $R_1 = 0.1104,$            |
| i mai re indexes [un datu]            | $wR_2 = 0.2922$                | $wR_2 = 0.2728$            |
| Largest diff. peak/hole / e Å-3       | 1.33/-1.95                     | 0.58/-0.32                 |

**Table S3** Crystallographic data of tin-based oxychalcogenide clusters

| Compounds                                   | T4-LON                     | T4-MTN                         |
|---------------------------------------------|----------------------------|--------------------------------|
| CCDC#                                       | 2241507                    | 2241508                        |
| Empirical formula                           | $In_{12}O_4S_{31}Sn_4Zn_4$ | $In_{12}O_4S_{31}Sn_4Zn_4$     |
| Formula weight                              | 3171.94                    | 3171.94                        |
| Temperature/K                               | 293(2)                     | 293(2)                         |
| Crystal system                              | hexagonal                  | cubic                          |
| Space group                                 | P6 <sub>3</sub> /m         | Fd-3m                          |
| a/Å                                         | 41.2494(6)                 | 80.4375(6)                     |
| b/Å                                         | 41.2494(6)                 | 80.4375(6)                     |
| c/Å                                         | 36.6629(7)                 | 80.4375(6)                     |
| α/°                                         | 90                         | 90                             |
| β/°                                         | 90                         | 90                             |
| γ/°                                         | 120                        | 90                             |
| Volume/Å <sup>3</sup>                       | 54024.7(19)                | 520446(12)                     |
| Z                                           | 16                         | 136                            |
| $\rho_{calc}g/cm^3$                         | 1.56                       | 1.376                          |
| µ/mm <sup>-1</sup>                          | 18.418                     | 16.251                         |
| F(000)                                      | 22976                      | 195296                         |
| Crystal size/mm <sup>3</sup>                | $0.3\times0.1\times0.1$    | $0.2\times0.2\times0.15$       |
|                                             | GaKa                       | GaKα                           |
| Radiation                                   | $(\lambda = 1.3405)$       | $(\lambda = 1.3405)$           |
| $2\Theta$ range for data collection/°       | 17.738 to 112.528          | 3.82 to 74.988                 |
|                                             | $-50 \le h \le 51,$        | $-73 \leq \mathbf{h} \leq 68,$ |
| Index ranges                                | $-35 \le k \le 47,$        | $-73 \le k \le 60,$            |
|                                             | $-31 \le 1 \le 45$         | $-70 \le l \le 59$             |
| Reflections collected                       | 134605                     | 151443                         |
| Independent reflections                     | $35436 [R_{int} = 0.1210,$ | 9210 [ $R_{int} = 0.0937$      |
| independent reflections                     | $R_{sigma} = 0.0721$ ]     | $R_{sigma} = 0.0287$ ]         |
| Data/restraints/parameters                  | 35436/0/661                | 9210/53/408                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.053                      | 1.179                          |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0586,$            | $R_1 = 0.0870,$                |
| 1 mai it indexes [17 -20 (1)]               | $wR_2 = 0.1728$            | $wR_2 = 0.2608$                |
| Final R indexes [all data]                  | $R_1 = 0.0979,$            | $R_1 = 0.1070,$                |
| i mai it indexes [an data]                  | $wR_2 = 0.1916$            | $wR_2 = 0.2888$                |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.52/-0.92                 | 0.76/-0.63                     |



Fig. S5 The photographs of the crystals



**Fig. S6** The the electron density difference map between two clusters in T3-MEP. The blue contours represent as H<sup>+</sup>NMP.



**Fig. S7** The different spatial arrangements between Tn clusters for assembling various topologies via coulombic interactions with the protonated organic amine templates.



**Fig. S8** The linkage mode between oxido-filled-T3  $\{Sn_{10}O_4S_{20}\}$  clusters, each of which connects to four neighbors via the Coulombic interactions with the protonated organic amine templates of H<sup>+</sup>NMP.



Fig. S9 Each cage-A ( $6^{2}5^{12}$ ) surrounded by 4 cage-B ( $5^{12}$ ) and 10 cage-A ( $6^{2}5^{12}$ ) in T3-MEP.



Fig. S10 The  $\{Sn_{10}O_4S_{20}\}^{8-}$  anions are scattered in 3D space in an MEP zeotype in which each cluster is treated as a node.



**Fig. S11** The crystal structure of T4-MTN (a,b) Discrete supertetrahedral T4- $[Sn_4ln_{12}Zn_4O_4S_{31}]^{10-}$ . (c) hexagonal and (d) Pentagonal windows. (e)  $6^{4}5^{12}$  cage-A and (f)  $5^{12}$  cage-B of topological representation. (g) MTN arrangement of T4 cluster anions and its simplified net. Sn, teal; In, brown; Zn, blue; S, gold; O, red.



**Fig. S12** The crystal structure of T4-DIA. (a,b) Discrete supertetrahedral T4- $[Sn_4In_{12}Zn_4O_4S_{31}]^{10-}$ . (c) chair hexagonal windows. (d)  $6^4$  cage of topological representation. (g) diamond arrangement of T4 cluster anions and its simplified net. Sn, teal; In, brown; Zn,

blue; S, gold; O, red.



**Fig. S13** The crystal structure of T4-LON (a,b) Discrete supertetrahedral T4- $[Sn_4ln_{12}Zn_4O_4S_{31}]^{10-}$ . (c) boat and chair (d) hexagonal windows. (d) 6<sup>5</sup> cage of topological representation. (g) lonsdaleite arrangement of T4 cluster anions and its simplified net. Sn, teal; In, brown; Zn, blue; S, gold; O, red.



**Fig. S14** The crystal structure of T4-SOD (a,b) Discrete supertetrahedral T4- $[In_{16}Zn_4S_{35}]^{14-}$ . (c) four-membered (b) six-membered and (e) distorted six-membered ring of window (d) truncated octahedral cage of topological representation. (g) sodalite arrangement of T4 cluster anions and its simplified net. In, brown; Zn, blue; S, gold.

Section S5: Powder X-Ray Diffraction (PXRD)



Fig. S15 Experimental and simulated PXRD patterns of T3-MEP.



Fig. S16 Experimental and simulated PXRD patterns of T4-DIA.



Fig. S17 Experimental and simulated PXRD patterns of T4-LON.



Fig. S18 Experimental and simulated PXRD patterns of T4-MTN.



Section S6: Fourier-Transform Infrared (FT–IR) Spectroscopy

Fig. S19 The FT–IR spectra of samples.

Section S7: Thermogravimetric Analysis (TGA)



Fig. S20 The TGA curves of samples.

Section S8: Tauc Plots from Ultraviolet Visible (UV–Vis) Diffuse

Reflection Spectroscopy (DRS)



Fig. S21 The tauc plots of samples.

Section S9: Scanning Electron Microscopy (SEM) and X-ray Energy



Dispersive Spectroscopy (EDS)

Fig. S22 The SEM images and EDS spectra of samples.

### Section S10: Proton Conduction



Fig. S23 Nyquist plots of T4-DIA at different RH at 25 °C.



Fig. S24 Nyquist plots of T4-LON at different RH at 25 °C.



Fig. S25 Nyquist plots of T4-MTN at different RH at 25 °C.



Fig. S26 Nyquist plots of T3-MEP at different temperatures under 98% RH.



Fig. S27 Nyquist plots of T4-DIA at different temperatures under 98% RH.



Fig. S28 Nyquist plots of T4-LON at different temperatures under 98% RH.



Fig. S29 Nyquist plots of T4-MTN at different temperatures under 75% RH.



**Fig. S30** Arrhenius plots of proton conductivity on the temperature of T4-DIA under 98% RH.



**Fig. S31** Arrhenius plots of proton conductivity on the temperature of T4-LON under 98% RH.



**Fig. S32** Arrhenius plots of proton conductivity on the temperature of T4-MTN under 75% RH.

## Section S11: References

- 1 (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst*, 2009,
  42, 339-341; (b) G. Sheldrick, *Acta Cryst*, 2015, C71, 3-8; (c) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Cryst*, 2015, A71, 59-75.
- 2 P. van der Sluis and A. L. Spek, Acta Cryst, 1990, A46, 194-201.