Electronic Supplementary Material

Carboxylate Engineering for Manipulating Optical and Assembly

Properties of Copper Clusters

Jing Sun,^{1,2,+} Fang Sun,⁵⁺ Jiaqi Tang,^{3,+} Xiongkai Tang,^{4,+} Qingyuan Wu,⁴ Rong Huo,¹ Ayisha He,¹ Sachurilatu,¹ Xueli Sun,¹ Chaolumen,^{2,*} Qing Tang,^{5,*} Hui Shen^{1,*}

¹ College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China. Email: shen@imu.edu.cn.

² College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. Email: chaolumen@imu.edu.cn

³ CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China

⁴ State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

⁵ School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University, Chongqing, 401331, China

⁺ *These authors contribute equally to this work.*

Figure S1. Digital photographs of single crystals of Cu₁₄-1 cluster.

Figure S2. Digital photographs of single crystals of Cu₁₄-2 cluster.

Figure S3. The thermal ellipsoids of the ORTEP diagram of Cu₁₄-1 cluster.

Figure S4. The packing structure of Cu_{14} -1 in the unit cell. Color codes for atoms: blue spheres, Cu; yellow spheres, S; green spheres, Cl; grey spheres, C. All hydrogen atoms are omitted for clarity.

Figure S5. (a) ESI-MS of Cu₁₄-1 in the positive mode. (b) The observed (dark yellow trace) and simulated (red trace) isotopic patterns of molecular ion peak of $[Cu_{15}(BEN)_6(AdmS)_8]^+$.

Figure S6. The thermal ellipsoids of the ORTEP diagram of Cu₁₄-2 cluster.

Figure S7. The packing structure of Cu_{14} -2 in the unit cell. Color codes for atoms: blue spheres, Cu; yellow spheres, S; green spheres, Cl; grey spheres, C. All hydrogen atoms are omitted for clarity.

Figure S8. Time-dependent UV spectra of Cu₁₄ clusters at room temperature. (a) Cu₁₄-1. (b) Cu₁₄-2. Note: the samples were stored in air in the dark.

identification code	Cu ₁₄ -1		
formula	$C_{124}H_{154}C_{14}Cu_{14}O_{12}S_8$		
formula weight	3124.30		
Temperature/K	100.01(10)		
crystal system	triclinic		
space group	<i>P</i> 1		
<i>a</i> (Å)	14.9570(4)		
<i>b</i> (Å)	15.1113(4)		
<i>c</i> (Å)	16.5332(5)		
α (°)	65.510(3)		
eta (°)	87.862(2)		
γ (°)	66.596(3)		
$V(\text{\AA}^3)$	3084.36(18)		
Ζ	1		
$D_{\rm c}$ / (g·cm ⁻³)	1.682		
Radiation	Cu Kα (λ= 1.54184 Å)		
Theta (°) range	2.972 to 64.810		
Index ranges	$-13 \le h \le 17, -15 \le k \le 17, -19 \le l \le 19$		
Refls. Total	10185		
restraints	0		
parameters	730		
R_1/wR_2 [I>2 σ (I)]	0.0727/0.2143		
R_1/wR_2 (all data)	0.0836/0.2195		
completeness	99.79		
GooF	1.094		

Table S1. Crystallographic data of Cu14-1.

identification code	Cu ₁₄ -2		
formula	$C_{164}H_{180}Cl_{12}Cu_{14}N_6O_{12}S_8\\$		
formula weight	3998.57		
Temperature/K	100.01(10)		
crystal system	trigonal		
space group	R3		
<i>a</i> (Å)	20.1767(4)		
<i>b</i> (Å)	20.1767(4)		
<i>c</i> (Å)	59.918(2)		
α (°)	90		
β (°)	90		
γ (°)	120		
$V(\text{\AA}^3)$	21124.4(11)		
Ζ	3		
$D_{\rm c}$ / (g·cm ⁻³)	1.598		
Radiation	Cu Kα (λ= 1.54184 Å)		
Theta (°) range	2.6760 to 64.7760		
Index ranges	$-13 \le h \le 17, -32 \le k \le 32, -23 \le l \le 23$		
Refls. Total	13957		
restraints	84		
parameters	952		
$\frac{R_1}{wR_2}$ [I>2 σ (I)]	0.0708/0.1838		
R_1/wR_2 (all data)	0.0856/0.1958		
completeness	99.94		
GooF	1.067		

Table S2. Crystallographic data of Cu14-2.

Entries	Cu-Cu	Cu-O	Cu-S
Cu ₁₄ -1	2.7557	1.955	2.2886
Cu ₁₄ -2	2.7202	1.962	2.2898

Table S3. Comparison of average bond lengths (Å) of Cu_{14} -1 and Cu_{14} -2.

Parameter	value	Parameter	value
Cu01-Cu02	2.6688(13)	Cu04-Cu06	2.7625(14)
Cu01-Cu03	2.7254(13)	Cu04-S008	2.4753(19)
Cu01-Cu04	2.6984(13)	Cu04-S009	2.6479(19)
Cu01-Cu04	2.7638(13)	Cu04-S00A	2.2894(19)
Cu01-S008	2.1808(17)	Cu04-O00E	2.042(5)
Cu01-S009	2.1712(18)	Cu05-S00B	2.138(2)
Cu02-Cu07	2.7264(14)	Cu05-O00I	1.863(5)
Cu02-S008	2.2546(18)	Cu06-S008	2.3688(18)
Cu02-S00A	2.2380(19)	Cu06-S009	2.3376(19)
Cu02-O00H	1.988(5)	Cu06-S00B	2.284(2)
Cu03-Cu05	2.7522(14)	Cu06-O00F	1.971(5)
Cu03-S009	2.2624(18)	Cu07-S00B	2.144(2)
Cu03-S00A	2.2477(19)	Cu07-O00J	1.879(6)

Table S4. Selected bond lengths (Å) for cluster Cu_{14} -1.

Parameter	value	Parameter	value
Cu01-Cu02	2.6094(12)	Cu04-S00B	2.1486(17)
Cu01-Cu03	2.6533(12)	Cu04-O00J	1.876(4)
Cu01-Cu06	2.6238(11)	Cu05-Cu06	2.7700(13)
Cu01-Cu06	2.8163(12)	Cu05-S009	2.4193(16)
Cu01-S009	2.1901(16)	Cu05-S00A	2.3454(16)
Cu01-S00A	2.1778(16)	Cu05-S00B	2.3028(18)
Cu02-Cu04	2.7475(12)	Cu05-O00L	1.998(4)
Cu02-S008	2.2244(16)	Cu06-S008	2.2879(17)
Cu02-S009	2.2489(16)	Cu06-S009	2.5343(17)
Cu02-O00I	2.001(4)	Cu06-S00A	2.5726(17)
Cu03-Cu07	2.6991(13)	Cu06-O00K	2.026(4)
Cu03-S008	2.2077(16)	Cu07-S00B	2.1512(19)
Cu03-S00A	2.2466(17)	Cu07-O00N	1.889(5)

Table S5. Selected bond lengths (Å) for cluster Cu_{14} -2.

Reference

1. CrysAlisPro Version 1.171.35.19. (**2013**). Agilent Technologies Inc. Oxfordshire, OX5 1QU, UK.

2. G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.

3. G. M. Sheldrick, Acta Cryst. A 2008, 64, 112-122.

- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J.
- Appl. Cryst. 2009, 42, 339-341.
- 5. C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.