# **Electronic Supplementary Information**

# Contrasting-functionality-decked robust MOF for moisture-tolerant and variable-temperature CO<sub>2</sub> adsorption with in-built urea group mediated mild condition cycloaddition

Manpreet Singh,<sup>ab</sup> Partha Pratim Mondal,<sup>a</sup> Sonal Rajput,<sup>a</sup> and Subhadip Neogi<sup>ab\*</sup>

<sup>a</sup>Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat-364002, India <sup>b</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India \*E-mail (SN): <u>sneogi@csmcri.res.in</u>, <u>subhadip79@gmail.com</u>

# Table of content

# Page S-

| Materials and physical measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single crystal X-ray crystallography                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Experimental Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Synthesis of ligands4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Scheme S1. Synthesis of C <sub>3</sub> -symmetric ligand H <sub>3</sub> TCA4                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Scheme S2. Synthesis of Linker L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Synthesis of the MOF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Scheme S3. Schematic illustration of MOF synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Fig. S1.</b> (a)Asymmetric unit of the MOF and (b) representative figure of isostructural MOF [10] without urea functionality                                                                                                                                                                                                                                                                                                                                                                                  |
| Fig. S2. Thermogravimetric curve of as-synthesized (red) and activated (purple) MOF5                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fig. S3. FTIR spectra of as-synthesized (red) and activated (purple) MOF                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fig. S4. SEM image of the activated framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Fig. S5.</b> (a) XPS survey spectra of the MOF along with deconvoluted high resolution spectra of (b) O 1s, and (c) N 1s                                                                                                                                                                                                                                                                                                                                                                                       |
| Fig. S6. Intact PXRD pattern of the MOF after surface area measurement                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calculation of Heat of adsorption ( $Q_{st}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fig. S7. Heat of adsorption curve of CO <sub>2</sub> adsorption for activated framework                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Fig. S8.</b> (a) N <sub>2</sub> adsorption isotherm at 77 K for the activated framework, (b) N <sub>2</sub> adsorption isotherms before and after CO <sub>2</sub> adsorption, (c) Amount of CO <sub>2</sub> adsorbed before (black) and after (orange) exposure to humidity at different temperature, and (d) PXRD pattern before (humid exposure) after (humid exposure) and after CO <sub>2</sub> adsorption (e) CO <sub>2</sub> adsorption-desorption isotherm at 273 K for the un-functionalized framework |
| Calculations of Adsorption Selectivity by IAST method10                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Table S1.</b> Langmuir fitting parameters for the activated framework.       10                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <b>Fig. S9.</b> Maps of the occupied positions of $CO_2$ (red) in $10^6$ equilibrated frames for a given pressure of 1 bar at (a) 273 K (b) 298 K & (c) 313 K11                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. S10. Optimization of reaction time on the conversion and selectivity of styrene oxide11                                                                                                                 |
| Yield calculation for CO <sub>2</sub> cycloaddition reaction catalyzed by activated MOF:12                                                                                                                   |
| <b>Fig. S11.</b> NMR spectra of styrene carbonate (4-Phenyl-1,3-dioxolan-2-one) (a) ${}^{1}$ H & (b) ${}^{13}$ C in CDCl <sub>3</sub>                                                                        |
| <b>Fig. S12.</b> NMR spectra of epichlorohydrin carbonate (4-(chloromethyl)-1,3-dioxolan2-one)<br>(a) <sup>1</sup> H & (b) <sup>13</sup> C in CDCl <sub>3</sub>                                              |
| <b>Fig. S13.</b> NMR spectra of butylene carbonate (4-Ethyl-1,3-dioxolan-2-one) (a) <sup>1</sup> H & (b) <sup>13</sup> C in CDCl <sub>3</sub>                                                                |
| <b>Fig. S14.</b> NMR spectra of propylene carbonate (4-Methyl-1,3-dioxolan-2-one) (a) ${}^{1}$ H & (b) ${}^{13}$ C in CDCl <sub>3</sub>                                                                      |
| <b>Fig. S15.</b> NMR spectra of phenyl glycidyl carbonate (4-(phenoxymethyl)-1,3- dioxolan-2-<br>one) (a) <sup>1</sup> H & (b) <sup>13</sup> C in CDCl <sub>3</sub>                                          |
| Fig. S16. PXRD pattern of the MOF before (black) and after (green) catalysis                                                                                                                                 |
| Fig. S17. FTIR spectra of the MOF before (black) and after (red) catalysis                                                                                                                                   |
| <b>Fig. S18</b> . XPS spectra of MOF after catalysis: deconvoluted spectra of (a) Cd 3d, (b) C 1s, (c) O 1s, (d) N 1s and (e) Intact XPS survey spectra of the framework post catalysis                      |
| <b>Fig. S19.</b> (a) SEM images of the catalyst post catalysis and (b) Elemental mapping showing uniform distribution of elements (mix, Cd, C, O, N) in the selected area of the MOF crystal after catalysis |
| Fig. S20. N <sub>2</sub> adsorption isotherm of the MOF before and after five cycles of catalysis20                                                                                                          |
| <b>Table S2.</b> Crystal data and refinement parameters for the MOF.    22                                                                                                                                   |
| Determination of formula & solvent composition of the MOF from PLATON and TGA23                                                                                                                              |
| <b>Table S4.</b> List of metal-organic frameworks and their corresponding surface area and CO2adsorption capacity at 237 K up to a pressure of 1 bar                                                         |

#### Materials and physical measurements

All the solvents and reagents were purchased from commercial sources (except  $H_3TCA$  and L) and used without further purification.  $H_3TCA$  and linker L were synthesised as per experimental section. Powder X-ray diffraction (PXRD) data were collected using a PANalytical Empyrean (PIXcel 3D detector) system equipped with Cu K<sub> $\alpha$ </sub> ( $\lambda$ =1.54 Å) radiation. The Fourier Transform Infrared-spectra (IR) of the samples were recorded using the KBr pellet method on a Perkin-Elmer GX FTIR spectrometer in the region of 4000–400 cm<sup>-1</sup>. Surface area and gas sorption measurement was carried out using Quantachrome Autosorb IQ instrument. Thermogravimetric analyses (TGA) (heating rate of 5 °C/min under N<sub>2</sub> atmosphere) were performed with a Mettler Toledo Star SW 8.10 system. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Avance-II 500 MHz NMR spectrometer. Scanning Electron Microscopic (SEM) and Transmission Electron Microscopic (TEM) images were obtained with a JEOL JSM 7100F and JEOL, JEM 2100 instrument, respectively. XPS analysis was carried out using a Thermo Scientific ESCALAB 250 Xi photoelectron spectrometer (XPS) using a monochromatic Al Ka X-ray as an excitation source. Inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis was measured by Perkin Elmer, Optima 2000 Microanalyses of the compounds were conducted using elementarvario MICRO CUBE analyser.

# Single crystal X-ray crystallography

Single crystals with suitable dimensions were chosen under an optical microscope and mounted on a glass fibre for data collection. The crystal data for as synthesized block shaped crystal of the framework were collected on a Bruker D8 Quest diffractometer, with CMOS detector in shutter less mode. The crystals were cooled to low temperature using an Oxford Cryostream liquid nitrogen cryostat. The instrument was equipped with a graphite monochromatized MoKa X-ray source ( $\lambda = 0.71073$  Å), with Triumph<sup>TM</sup> X-ray source optics. Data collection and initial indexing and cell refinement were handled using APEX II software.<sup>1</sup> Frame integration, including Lorentz-polarization corrections, and final cell parameter calculations were carried out using SAINT+ software.<sup>2</sup> The data were corrected for absorption using the SADABS program.<sup>3</sup> Decay of reflection intensity was monitored by analysis of redundant frames. The structure was solved using Direct methods and difference Fourier techniques. All non-hydrogen atoms were refined anisotropically. All H atoms were placed in calculated positions using idealized geometries (riding model) and assigned fixed isotropic displacement parameters. The SHELXL-2014 package within the OLEX2 crystallographic software<sup>4-7</sup> was applied for structure refinement with several full-matrix least-squares/difference Fourier cycles. The disordered guest solvent molecules in the crystal lattice were treated with solvent mask option in OLEX2 software.<sup>4</sup> The potential solvent accessible void space was calculated using the PLATON<sup>8</sup> software. The crystal and refinement data framework is listed in Table S1. Topological analysis was performed by using TOPOSPro software.<sup>9</sup>

### **Experimental Section**

# Synthesis of ligands

# 4,4',4"-tricarboxytriphenylamine (H<sub>3</sub>TCA)

Ligand was synthesized and characterised by following similar protocol, reported from our group.<sup>10</sup>



4,4',4"-trinitrilotriphenylamine

4,4',4"-tricarboxytriphenylamine

Scheme S1. Synthesis of C<sub>3</sub>-symmetric ligand H<sub>3</sub>TCA.

# 1,3-di(pyridin-4-yl)urea (L)

Ligand was synthesized and characterised by following similar protocol, reported from our group.11



Scheme S2. Synthesis of Linker L.

# Synthesis of the MOF

A mixture of Cd(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O (30 mg, 0.1 mmol), Linker (L) (21.4 mg, 0.1 mmol) and H<sub>3</sub>TCA (19 mg, 0.05 mmol) was dissolved in the mixed solvent system (N,N-Dimethylacetamide: Water = 4 mL : 2 mL) in a 15 mL glass vial. The mixture was homogenised under ultrasonic treatment for 15 min. Followed by, heating it at 85 °C for 4 days, and then slowly cooled down to room temperature. The shiny, colourless, and rectangular block shaped X-ray quality crystals were obtained; which were then filtered, thoroughly washed with fresh DMA and air dried (yield: 75 %).



Scheme S3. Schematic illustration of MOF synthesis.



**Fig. S1.** (a)Asymmetric unit of the MOF and (b) representative figure of isostructural MOF [10] without urea functionality.



Fig. S2. Thermogravimetric curve of as-synthesized (red) and activated (purple) MOF.



Fig. S3. FTIR spectra of as-synthesized (red) and activated (purple) MOF.



Fig. S4. SEM image of the activated framework.



**Fig. S5.** (a) XPS survey spectra of the MOF along with deconvoluted high resolution spectra of (b) O 1s, and (c) N 1s.



Fig. S6. Intact PXRD pattern of the MOF after surface area measurement.

S-7

#### Calculation of Heat of adsorption $(Q_{st})$

Clausius Clapeyron equation was employed for calculation of heat of adsorption ( $\Delta H_{ads}$ ). In order to use this equation, two data points are required for both temperature and pressure are required respectively. Data at 273 K & 298 K in the pressure range from 0-1 bar with constant uptake was fit in the equation.

$$ln\frac{P_2}{P_1} = \frac{\Delta H_{ads}}{R} \left(\frac{T_2 - T_1}{T_2 T_1}\right) \dots (\text{Equation S1})$$

Where,

 $\Delta H_{ads}$  = Isosteric heat of adsorption, R = universal gas constant,

P = pressure,

T = temperature.

The  $\Delta H_{ads}$  is obtained as a function of uptake by using above equation and adsorption isotherms measured as shown in main text and this was carried out with a linear interpolation method, as shown below.



Fig. S7. Heat of adsorption curve of CO<sub>2</sub> adsorption for activated framework.



**Fig. S8.** (a)  $N_2$  adsorption isotherm at 77 K for the activated framework, (b)  $N_2$  adsorption isotherms before and after CO<sub>2</sub> adsorption, (c) Amount of CO<sub>2</sub> adsorbed before (black) and after (orange) exposure to humidity at different temperature, and (d) PXRD pattern before (humid exposure) after (humid exposure) and after CO<sub>2</sub> adsorption (e) CO<sub>2</sub> adsorption-desorption isotherm at 273 K for the un-functionalized framework.

#### **Calculations of Adsorption Selectivity by IAST method**

In order to predict mixed-gas adsorption equilibria from single –component isotherm Ideal Adsorption Solution Theory (IAST) was used. Langmuir equation (give below) was successfully used for fitting our data.

$$q = \frac{q_m bp}{1+bp}$$
 .....(Equation S2)

q - adsorbed amount per mass of adsorbent

qm - saturation capacity

b - affinity coefficient of adsorption sites

p - pressure of the bulk gas at equilibrium with the adsorbed phase

The fitted parameters were then used to predict single-component adsorption with IAST.

The inputs to the IAST calculations are pure-component adsorption isotherms at the temperature of interest, and the output is the adsorption selectivity is defined by the following equation,

$$S_{ads} = \frac{q_{CO_2}/q_{Other}}{p_{CO_2}/p_{other}}.....$$
(Equation S3)

Where,  $q_{CO_2}$  and  $q_{Other}$  are the absolute component loadings of the adsorbed phase in the mixture and  $p_{CO_2}$  and  $p_{other}$  are the corresponding relative pressure.

| Gas (Analysis Temp)     | qm    | b    |
|-------------------------|-------|------|
| CO <sub>2</sub> (273 K) | 77.4  | 2.17 |
| CO <sub>2</sub> (298 K) | 49.7  | 1.36 |
| CO <sub>2</sub> (313 K) | 46.13 | 0.8  |
| СН <sub>4</sub> (273 К) | 65.3  | 0.29 |
| CH4 (298 K)             | 10.9  | 0.76 |
| CH <sub>4</sub> (313 K) | 6.79  | 0.76 |
| N <sub>2</sub> (273 K)  | 3.27  | 0.19 |
| N <sub>2</sub> (298 K)  | 1.14  | 0.19 |
| N <sub>2</sub> (313 K)  | 0.53  | 0.19 |

**Table S1.** Langmuir fitting parameters for the activated framework.



**Fig. S9.** Maps of the occupied positions of  $CO_2$  (red) in  $10^6$  equilibrated frames for a given pressure of 1 bar at (a) 273 K (b) 298 K & (c) 313 K.



**Fig. S10.** Optimization of reaction time on the conversion and selectivity of styrene oxide. (Reaction conditions: epoxide, 26.46 mmol; MOF, 0.25 mol %; Bu<sub>4</sub>N<sup>+</sup>Br<sup>-</sup>, 0.2 mol %; CO<sub>2</sub> pressure, 0.5 MPa; temp, 50 °C; Selectivity > 99%)

# Yield calculation for CO<sub>2</sub> cycloaddition reaction catalyzed by activated MOF:

For styrene carbonate the formula are

Conversion (%) =  $[1 - {5I_{Ha}/I_{H(b-f)}}] \times 100 \%$ 

Yield (%) =  $\{5I_{Ha}/I_{H(b-f)}\} \times 100 \%$ 

From Fig. S7, for styrene carbonate,  $I_{Ha}$ = 0.00,  $I_{Ha'}$ = 1.00 and  $I_{H(b-f)}$ = 5

Therefore, conversion (%) =  $\{1-(5\times0.00/4.99)\}\times100 \% = 100 \%$ 

Yield (%) =  $(5 \times 1/5) \times 100 \% = 100 \%$ 

Conversion and yield were calculated by integrating the characteristic proton signals of epoxide and cyclic carbonate molecules in their <sup>1</sup>H NMR spectra and applying the following formula.

Conversion (%) = { $I_{Ha'}/(I_{Ha}+I_{Ha'})$ } ×100 %

Yield (%) = { $I_{Ha}/(I_{Ha}+I_{Ha'})$ } ×100 %

From Fig. S10, for propylene carbonate,  $I_{Ha}$ = 0.00,  $I_{Ha'}$ = 1.00

Therefore, conversion of propylene oxide = yield of propylene carbonate =  $\{1/(1+0.00)\} \times 100$ % = >99 %



**Fig. S11.** NMR spectra of styrene carbonate (4-Phenyl-1,3-dioxolan-2-one) (a)  ${}^{1}$ H & (b)  ${}^{13}$ C in CDCl<sub>3</sub>.



**Fig. S12.** NMR spectra of epichlorohydrin carbonate (4-(chloromethyl)-1,3-dioxolan2-one) (a)  ${}^{1}$ H & (b)  ${}^{13}$ C in CDCl<sub>3</sub>.



Fig. S13. NMR spectra of butylene carbonate (4-Ethyl-1,3-dioxolan-2-one) (a)  ${}^{1}$ H & (b)  ${}^{13}$ C in CDCl<sub>3</sub>.



**Fig. S14.** NMR spectra of propylene carbonate (4-Methyl-1,3-dioxolan-2-one) (a)  ${}^{1}$ H & (b)  ${}^{13}$ C in CDCl<sub>3</sub>.



Fig. S15. NMR spectra of phenyl glycidyl carbonate (4-(phenoxymethyl)-1,3- dioxolan-2- one) (a)  ${}^{1}$ H & (b)  ${}^{13}$ C in CDCl<sub>3</sub>.



Fig. S16. PXRD pattern of the MOF before (black) and after (green) catalysis.



Fig. S17. FTIR spectra of the MOF before (black) and after (red) catalysis.



**Fig. S18**. XPS spectra of MOF after catalysis: deconvoluted spectra of (a) Cd 3d, (b) C 1s, (c) O 1s, (d) N 1s and (e) Intact XPS survey spectra of the framework post catalysis.



**Fig. S19.** (a) SEM images of the catalyst post catalysis and (b) Elemental mapping showing uniform distribution of elements (mix, Cd, C, O, N) in the selected area of the MOF crystal after catalysis.



Fig. S20. N<sub>2</sub> adsorption isotherm of the MOF before and after five cycles of catalysis.

S-20



**Fig. S21.** Emission spectrum of (a) activated framework with styrene epoxide in presence of TBAB (b) isoskeletal framework in presence of styrene epoxide (c) activated framework with styrene.

| Identification code                         | MOF                                                                            |
|---------------------------------------------|--------------------------------------------------------------------------------|
| Empirical formula                           | C <sub>53</sub> H <sub>38</sub> Cd <sub>3</sub> N <sub>6</sub> O <sub>15</sub> |
| Formula weight                              | 1336.16                                                                        |
| Temperature/K                               | 180.15                                                                         |
| Crystal system                              | triclinic                                                                      |
| Space group                                 | <i>P</i> -1                                                                    |
| a/Å                                         | 14.7456(3)                                                                     |
| b/Å                                         | 14.8727(3)                                                                     |
| c/Å                                         | 19.8711(5)                                                                     |
| α/°                                         | 95.8630(10)                                                                    |
| β/°                                         | 103.1660(10)                                                                   |
| γ/°                                         | 112.2630(10)                                                                   |
| Volume/Å <sup>3</sup>                       | 3840.17(15)                                                                    |
| Z                                           | 2                                                                              |
| $\rho_{calc}g/cm^3$                         | 1.1555                                                                         |
| $\mu/\text{mm}^{-1}$                        | 0.874                                                                          |
| F(000)                                      | 1319.8                                                                         |
| Crystal size/mm <sup>3</sup>                | 0.232 	imes 0.087 	imes 0.034                                                  |
| Radiation                                   | Mo K $\alpha$ ( $\lambda$ = 0.71073)                                           |
| 20 range for data collection/°              | 4.72 to 52.82                                                                  |
| Index ranges                                | $-18 \le h \le 18, -18 \le k \le 18, -24 \le l \le 24$                         |
| Reflections collected                       | 144882                                                                         |
| Independent reflections                     | 15381 [ $R_{int} = 0.0700, R_{sigma} = 0.0389$ ]                               |
| Data/restraints/parameters                  | 15381/0/697                                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.028                                                                          |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0470, wR_2 = 0.1355$                                                  |
| Final R indexes [all data]                  | $R_1 = 0.06\overline{19}, wR_2 = 0.1437$                                       |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.89/-1.13                                                                     |

Table S2. Crystal data and refinement parameters for the MOF.

### **Explanation for the alerts**

#### Alert level B:

PLAT420\_ALERT\_2\_B D-H Bond Without Acceptor O1 --H1A . Please Check PLAT420\_ALERT\_2\_B D-H Bond Without Acceptor O1 --H1B . Please Check PLAT420\_ALERT\_2\_B D-H Bond Without Acceptor O01A --H01A . Please Check PLAT420\_ALERT\_2\_B D-H Bond Without Acceptor O01A --H01B . Please Check

**Explanations**: The atom pairs correspond to the O-H groups of metal-coordinated water molecules. These alerts were generated due to a common error of an -OH with hydrogen atom on a calculated position with O-H pointing in the wrong direction.

PLAT910\_ALERT\_3\_B Missing # of FCF Reflection(s) Below Theta(Min). 12 Note

**Explanations**: This alert was generated due to omission of some reflections in the refinement process for technical reasons.<sup>12</sup>

PLAT934\_ALERT\_3\_B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 10 Check

Explanations: This alert is due to a consequence of weak data quality.<sup>12, 13</sup>

# Determination of formula & solvent composition of the MOF from PLATON and TGA

From the TGA plot of as-synthesized MOF, the observed mass loss is 21.27 % From PLATON Squeeze program, void electron count / unit cell turns out to be 206. Now, formula of the asymmetric unit (SCXRD) excluding all lattice guest molecules is  $[Cd_3(TCA)_2L(H_2O)_2]$ , with corresponding mass: 1334.13

**Table S3.** Number of electrons and molecular mass of guest molecules, associated with MOF for determination of solvent composition and molecular formula.

|                        | Dimethyl acetamide (DMA) | Water |
|------------------------|--------------------------|-------|
| No. of electrons count | 48                       | 10    |
| mass                   | 82                       | 18    |

Considering the above-mentioned number of electrons, the best possible combination of solvent molecules for this MOF could be  $[Cd_3(TCA)_2L(H_2O)_2]\cdot 2DMA\cdot 11H_2O$ 

The total number of electrons contributed by lattice solvent molecules will be  $[2\times(48) + (10\times11)] = 206$ , which is in agreement with the PLATON result, and validates this formula. The aforementioned combination was further cross-checked from TGA analysis.

Total mass loss due to solvents is  $[2 \times (82) + (11 \times 18)] = 362$ 

Therefore, total mass of MOF including all the guests is (1334.13+362) = 1696.13

Therefore, mass loss due to solvents is  $[(362/1696.13) \times 100]$  % = 21.34 %, which is also comparable to that of the TGA result.

From elemental analysis, calculated C: 42.88, H: 4.60, N: 6.56 and found C: 42.81, H: 4.64, N: 6.55

|              | No. of moles of C  | No. of moles of H  | No. of moles of N   |
|--------------|--------------------|--------------------|---------------------|
| Calculated   | 42.88/12.01 = 3.57 | 4.60/1.0079 = 4.56 | 6.56/14.0067 = 0.46 |
| Experimental | 42.81/12.01 = 3.56 | 4.64/1.0079 = 4.6  | 6.55/14.0067 = 0.46 |

Therefore, calculated mole ratio of C, H, N is 7.76:9.91:1, while found mole ratio is 7.73:10:1, which are in good agreement, thus validating the above formula.

|          | Chemical formula                                                                                                                             | Common     | BET            | Capacit                | - Qst                | Sel        | ectivity | Ref. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|------------------------|----------------------|------------|----------|------|
| S.No     |                                                                                                                                              | name       | $(m^2/\sigma)$ | $\frac{y}{(cm^{3}/g)}$ | k Imol <sup>-1</sup> | $CO_2/N_2$ |          |      |
| •        |                                                                                                                                              |            | (11175)        | (cm /g)                | KJIIOI               | 002/112    | 002/0114 |      |
| 1.       | Er <sub>2</sub> (PDA) <sub>3</sub>                                                                                                           | -          | -              | 11.71                  | 30.1                 | -          | -        | 14   |
|          | [NH <sub>2</sub> (CH <sub>3</sub> ) <sub>2</sub> ][Zn <sub>3</sub> (BTA)(BTC) <sub>2</sub> (H <sub>2</sub> O)]                               |            | 697            | 102                    | -                    | 11.2       | 3.1      | 15   |
| 2.       | [NH2(CH3)2]2[Cd3(BTA)(BTC)2(H2O)]2                                                                                                           | -          | 508            | 84                     |                      | 12         | 3.1      | 15   |
| 2        | [Cd(bpydc) <sub>2</sub> (DMF) <sub>2</sub> ·2DMF] <sub>n</sub> (JMS-3)                                                                       | JMS-3a     |                | 30.89                  | 34.4                 | -          | -        | 16   |
| з.       | [Zn(bpydc)(DMF)·DMF] <sub>n</sub> (JMS-4)                                                                                                    | JMS-4a     |                | 16.08                  | 30.7                 | -          | -        |      |
| 4.       | $[Sc_3(\mu_3-O)(L)_{1.5}(H_2O)_3Cl]_n$                                                                                                       | NJU-Bai49  | 1189           | 137.5                  | 33.4                 | -          | -        | 17   |
| 5.       | $[\text{Co}^{\text{II}_4}(\mu\text{-OH}_2)4(\text{MTB})_2 \cdot (\text{H}_2\text{O})_4]_n$ $\cdot 13n\text{DMF} \cdot 11n\text{H}_2\text{O}$ | SNU-15     | 356            | 35.7                   | -                    | -          | -        | 18   |
| 6.       | CuB(4-MIm) <sub>4</sub>                                                                                                                      | BIF-8-Cu   | 1287           | 34.1                   |                      | -          | -        | 19   |
|          | LiB(4-MIm) <sub>4</sub>                                                                                                                      | BIF-9-Li   | 1523           | 35.6                   | -                    | -          | -        | 20   |
| 7.       | $[Zn_2(btm)_2]\cdot 4H_2O$                                                                                                                   | MAF-23     | 622***         | 74.2                   | 47.4                 | 82         | -        | 20   |
| 8.       | -                                                                                                                                            | (SH)2      | 308            | -                      |                      | -          | -        | 21   |
| 9.       | [Cu(bpy) <sub>2</sub> (EDS)] <sub>n</sub>                                                                                                    | TMOF-1     | 256            | 47.1                   | 30.9                 | -          | -        | 22   |
| 10.      | $[Zn_2(L)(oba)_2]$ ·3DMA·2CH <sub>3</sub> OH·3H <sub>2</sub> O                                                                               | CSMCRI-16  | 599**          | 85.79                  | 24.62                | 155.3      | 3.1      | 23   |
| 11.      |                                                                                                                                              | NUM-3a     | 2111           | 113                    | 24.1                 | 82.8       | 11       | 24   |
| 12.      | $[Cu_2(BDPT^{4-})(H_2O)_2]$                                                                                                                  | HNUST-1    | 1400           | 156.4                  | 31.2                 | 39.8       | 7.2      | 25   |
| 13.      | $[Zn(hfipbb)(bpt)]_n \cdot n(DMF)_2 \cdot n(H_2O) (1)$                                                                                       |            | 77*            | 21.4                   | 33.6                 | -          | -        | 26   |
|          | UiO-66(Hf)-(COOH) <sub>2</sub>                                                                                                               |            | 378            | 37.4                   | 28.2                 | -          | -        | 27   |
| 14.      | UiO-66(Hf)-(F)4                                                                                                                              |            | 329            | 27.55                  | 23.4                 | -          | -        |      |
| 15.      | Al(Sbpdc)(OH)                                                                                                                                | USTC-253   | 1800           | 82.4                   | 25.5                 | -          | -        | 28   |
|          | UiO-66(Zr)-(OCH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub>                                                                                  |            | 405            | 23.07                  | 26.2                 | -          | -        |      |
| 16       | UiO-66(Zr)-(F)4                                                                                                                              |            | 833            | 47.26                  | 18.7                 | -          | -        | 29   |
| 10.      | UiO-66(Zr)-(COOH)4                                                                                                                           |            | 212            | 18.03                  | 30.5                 | -          | -        |      |
| 17.      | [Cu <sub>2</sub> PDAI(H <sub>2</sub> O)]                                                                                                     | PCN-124    | 1372           | 204                    | 26.3                 | -          | 20       | 30   |
| 18       | $ \{ [Zn_2(TPOM)(3,7-DBTDC)_2 ] \\ \cdot 7H_2O \cdot DMA \}_n $                                                                              |            | 267**          | 28.2                   | 34.1                 | 124.8      | 3        | 31   |
| 10.      | $ \{ [Cd_2(TPOM)(3,7-DBTDC)_2] \\ \cdot 6H_2O \cdot 3DMF \} $                                                                                |            | 432**          | 37.8                   | 31.7                 | 47.6       | 12.3     |      |
| 19.      | $[Zn(btz)] \cdot DMF \cdot 0.5H_2O_n (H_2btz = 1,5-bis(5-tetrazolo)-3-oxapentane$                                                            | Zn-btz     | 1151           | 181.24                 | 31.2                 | -          | 21.1     | 32   |
| 20.      | Al4(OH)2(OCH3)4(BDC-NH2)3                                                                                                                    | CAU-1      | 1268           | 161.28                 | ~48                  | 101        | -        | 33   |
| 21.      |                                                                                                                                              | NU-1000    | 2320           | 31                     | 17                   | -          | -        | 34   |
| 22.      | $[{Zn(BINDI)_{0.5}(bpa)_{0.5}(H_2O)}]_{.4H_2O]_n$                                                                                            | MOF1       | 84*            | 22.8                   | 33.8                 | -          | -        | 55   |
| 23.      | $\{[Zn(SDB)(3,3'-L)_{0,5}] \cdot xG\}_n$                                                                                                     | IITKGP-13A | 206**          | 45.02                  | 25                   | 76         | 9.8      | 36   |
| <u> </u> | $\{ [Zn_2(SDB)_2(4,4'-L)] \cdot xG \}_n$                                                                                                     | шткбр-13В  | 129**          | 18.59                  | 20.83                | -          | -        |      |
| 24.      | methyltetrazole)                                                                                                                             | TTF-4      | 1172           | 67.6                   | 16.7                 | -          | -        | 37   |
| 25.      | {[Cu <sub>2</sub> (4-TPOM)(3,7-<br>DBTDC) <sub>2</sub> ]·4H <sub>2</sub> O·3DMF} <sub>n</sub> (1)                                            | -          | 385**          | 63                     | 24                   | 1942       | 34       | 38   |
| 26.      |                                                                                                                                              | LIFM-33    | 1588           | 80.4                   | 39.7                 | 33         | -        | 39   |
| 27       | ${[Zn_5(dmtrz)_3(IPA)_3(OH)] \cdot DMF \cdot H_2O}_n$                                                                                        | MAC-4      | 796            | 33.6                   | 21                   | -          | -        |      |
| -/·      | {[Zn5(dmtrz)3(OH-<br>IPA)3(OH)]·DMF·5H2O}n                                                                                                   | MAC-4-OH   | 339            | 69.44                  | 31                   | -          | -        | 40   |

**Table S4.** List of metal-organic frameworks and their corresponding surface area and  $CO_2$  adsorption capacity at 237 K up to a pressure of 1 bar.

| 28. | Mg2(dondc)(en)1.5(H2O)0.5                                                                                                 |                        | 1553       | 58.24          | 44    | 116   | -     | 41           |
|-----|---------------------------------------------------------------------------------------------------------------------------|------------------------|------------|----------------|-------|-------|-------|--------------|
| 29. | ${[Co(BDC)(L) \cdot 2H_2O] \cdot xG}_n$                                                                                   | CoMOF-2                | 6.8        | ~51            | 35    | -     | -     | 42           |
| 30. | Cu <sub>2</sub> (BPnDC) <sub>2</sub> (bpy)                                                                                | SNU-6                  | 2590       | 50.4           | -     | -     | -     | 43           |
| 31. |                                                                                                                           | Ni-MOF-1               | 152        | 37.57          | 36.57 | 42.89 | -     | 44           |
| 32. | [Cd( <i>L1</i> ) <sub>2</sub> ]·2DMF                                                                                      | 7a                     | 18         | 28.29          | 24.02 | 157.6 | 6.1   | 45           |
|     | [Cd( <i>L2</i> ) <sub>2</sub> ]•2DMF                                                                                      | 8a                     | 23         | 53.65          | 34.92 | 322.2 | 10.0  |              |
| 33. | [Cu <sub>1.5</sub> ( <i>L</i> )(bpy)]•DMF•1.5H <sub>2</sub> O                                                             | CSMCRI-13              | 79         | 75.17          | 28.57 | -     | -     | 46           |
| 34. | rht-MOF-1                                                                                                                 |                        | 2100       | 112.4          | 28.5  | -     | 36    | 47           |
| 25  | ${[Zn(CHDC)(L)].H_2O}_n(1)$                                                                                               |                        | 7          | 4              |       | -     | -     | 48           |
| 35. | ${[Cd(CHDC)(L)].H_2O}_n(2)$                                                                                               |                        | 19         | 6              |       | -     | -     |              |
| 36. | [Cu(BDC-NO <sub>2</sub> )(DMF)]·xSolvents                                                                                 | CuBDC-<br>NO2-a        | 523        | 73.92          | 20.2  | -     | -     | 49           |
| 37. | $\{[Zn(SDB)(L)_{0.5}]\cdot S\}_n$                                                                                         | IITKGP-5               | 366        | -              | 56.4  | 435.5 | 151.6 | 50           |
| 38. | ([NH <sub>2</sub> (CH <sub>3</sub> ) <sub>2</sub> ][Cu <sub>2</sub> O(Ad)(BDC)]·(H <sub>2</sub> O) <sub>2</sub> (<br>DMA) | IISERP-<br>MOF26       | 210.6      | 22             | 96.32 | 160   | 15    | 51           |
| 39. | Co2(ad)2(CO2CH3)2·2DMF·0.5H2O                                                                                             | bio-MOF-11             | 1040       | 45             | 134.4 | 81    | -     | 52           |
| 40. | ${[Zn_3(DMF)(btrm)(bdc)_3] \cdot nDMF}_{\infty}$                                                                          | MOF1                   | 20<br>92** | 17.9           | -     | 21.1  | -     | 53           |
| 41. | $[Zn_2(L)(bpb)_2](NO_3)(DMF)_3(H_2O)$                                                                                     | -                      | 425        | 19.9           | 54.3  | 181   | -     | 54           |
| 42. | $\{[Zn(H_2L_1)(L_2)] \cdot DMF \cdot 2H_2O\}_n$                                                                           | -                      | -          | 52.1           | 21.3  | 22    | 11    | 55           |
| 43. | Zr <sub>6</sub> O <sub>4</sub> (OH) <sub>4</sub> (BDC) <sub>6</sub>                                                       | UiO-66(Zr)             | 1390       | 49.28          | 26.3  | 37.5  | -     | 56           |
| 44. | Cu <sub>3</sub> (BTC) <sub>2</sub>                                                                                        | HKUST-1                | 1400       | 156.3          | 31.2  |       | -     | 57           |
| 45. |                                                                                                                           | UiO-66-NH <sub>2</sub> | 1258       | 70.56@2<br>98K | -     | -     | 32.3  | 58           |
| 46. |                                                                                                                           | PCN-88                 | 3308       | 160            | 27    |       | 18    | 59           |
| 47. | Cr <sub>3</sub> O(H <sub>2</sub> O) <sub>2</sub> F(BDC) <sub>3</sub>                                                      | MIL-101(Cr)            | 2166       | 22.6           | -     | 20.2  | -     | 60           |
| 48. | $[Cu_2(BDPT^{4-})(H_2O)_2]$                                                                                               | HNUST-1                | 1400       | 156            | 31.2  | 39.8  | 7.2   | 25           |
| 49. | $[Cd_3(TCA)_2L(H_2O)_2] \cdot 2DMA \cdot 11H_2O$                                                                          | Activated<br>Framework | 503        | 53.06          | 32.2  | 237   | 8     | This<br>work |

\*CO2@273 K \*\*CO2@195 K \*\*\*Langmuir

**Table S5.** A comparison of catalytic performance of activated framework to that of other MOF materials in  $CO_2$  cycloaddition.

| S.No. | MOF                                                                                                            | <b>Reaction Conditions</b> | Model           | Conversion/ | Ref. |
|-------|----------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|-------------|------|
|       |                                                                                                                |                            | Substrate       | Yield (%)   |      |
| 1.    | Mg-MOF-74                                                                                                      | 100 °C, 19.7 bar, 4 h      | Styrene oxide   | 95          | 61   |
| 2.    | NH <sub>2</sub> -MIL-101(Al)                                                                                   | 120 °C, 18 bar, 6h         | Styrene oxide   | 96          | 62   |
| 3.    | [Zn <sub>2</sub> (PZDC)(1/2ATZ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ·2.5H <sub>2</sub> O]             | 90 °C, 10 bar, 6 h         | Propylene oxide | 94          | 63   |
| 4     | [{Co(4,4'- bipy)(L-cys)(H <sub>2</sub> O)·H <sub>2</sub> O] <sub>n</sub><br>(2 D- CCB)                         | 120°C, 1 bar, 56 h         | Styrene oxide   | 85          | 64   |
| 5.    | [Cu <sub>5</sub> (TPTC) <sub>3</sub> (BPDC-Urea) <sub>0.5</sub> (H <sub>2</sub> O) <sub>5</sub> ] (1-<br>Urea) | RT, 30 h, 1 atm            | Propylene oxide | 98          | 65   |
| 6.    | $\label{eq:constraint} \begin{split} &\{[Zn_2(TBIB)_2(HTCPB)_2]\cdot 9DMF\cdot 19H_2O\\ &\}_n \end{split}$     | RT, 24 h, 1 atm            | Styrene oxide   | >99         | 66   |
| 7.    | $[{Sm(BTB)(H_2O)} \cdot H_2O]n$                                                                                | 80 °C 1 bar 15 b           | Styrene oxide   | 93          | 67   |
|       | $[{Gd(BTB)(H_2O)} \cdot H_2O]n$                                                                                | 60°C, 1°bai, 15°li         | Styrene oxide   | 93          |      |
| 8.    | [Zn <sub>3</sub> (BTC) <sub>2</sub> ]                                                                          | 130 °C, 13 bar, 6 h        | Styrene oxide   | 99.05       | 68   |
| 9.    | Ni-TCPE1                                                                                                       | 100 °C 10 har 12 h         | Sturana avida   | 100         | 69   |
|       | Ni-TCPE2                                                                                                       | 100 C, 10 Dai,12 II        | Styrelle Oxide  | 86.2        |      |
| 10.   | $[Zn_3(BTC)_2]$                                                                                                | 130 °C, 13 bar, 6 h        | Styrene oxide   | >99         | 68   |
| 11.   | Mg-MOF                                                                                                         | 60 °C, 1 bar, 24 h         | Epichlorohydrin | 99          | 70   |
| 12.   | ZIF-8                                                                                                          | 80 °C, 6.9 bar, 5 h        | Styrene oxide   | 39.4        | 71   |
| 13.   | Co-MOF-74                                                                                                      | 100 °C, 2 MPa, 4 h         | Styrene oxide   | 96          | 72   |
| 14.   | Ni@ZrOF                                                                                                        | 70 °C, 1 MPa; 6 h          | Styrene Oxide   | 97.6        | 73   |
| 15.   | CSMCRI-13                                                                                                      | 70 °C, 8 bar, 6 h          | Propylene Oxide | >99         | 46   |

| 16. | Cu-NTTA                                          | 100 °C, 10 bar, 8 h | Glycidyl Phenyl<br>Ether | 95.9 | 74           |
|-----|--------------------------------------------------|---------------------|--------------------------|------|--------------|
| 17. | DUT-52(Zr)                                       | 80 °C, 1.2 MPa, 6 h | Epichlorohydrin          | >99  | 75           |
| 18. | CSMCRI-9                                         | 65 °C, 10 bar, 6 h  | Styrene oxide            | 99.9 | 76           |
| 19. | ADES-3                                           | 80 °C, 10 bar, 8 h  | Styrene oxide            | 99   | 77           |
| 20. | Hf-NU-1000                                       | RT, 1 bar, 56 h     | Styrene oxide            | 100  | 78           |
| 21. | UiO-67-IL                                        | 90 °C, 1 bar, 12 h  | Epichlorohydrin          | 98   | 79           |
| 22. | MOF-892                                          | 80 °C, 1 bar, 16h   | Styrene oxide            | 82   | 80           |
| 23. | InDCPN-Cl                                        | 80 °C, 1 bar, 24 h  | Styrene oxide            | 71   | 81           |
| 24. | NUC-5                                            | 80 °C, 1 bar, 24 h  | Styrene oxide            | 99   | 82           |
| 25. | UMCM-1-NH <sub>2</sub>                           | RT, 12 bar, 24 h    | Propylene Oxide          | 53   | 83           |
| 26. | $[Cd_3(TCA)_2L(H_2O)_2] \cdot 2DMA \cdot 11H_2O$ | 50 °C, 0.5 MPa, 4h  | Styrene oxide            | 99.9 | This<br>Work |

### References

- 1. G. Sheldrick, SHELXS, University of Göttingen, Germany (1997);(c) W. Madison, Bruker APEX2 Software, Bruker AXS Inc. V2. 0-1, USA (2005);(d) GM Sheldrick, J SADABS, Program for Empirical Absorption Correction of Area Detector Data, 1997.
- 2. G. Sheldrick, SAINT and XPREP, version 5.1, *J Siemens Industrial Automation Inc.*, *Madison, WI*, 1995.
- 3. S. Bruker, Bruker AXS Inc., Madison, Wisconsin, USA, Version 6.02 (includes XPREP and SADABS), 1999.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program, *J. Appl. Crystallogr.*, 2009, **42**, 339.
- 5. G. Sheldrick, SHELXL-2014/7, University of Gottingen, Germany, 2014 Search PubMed;(b) L. Farrugia, *J. Appl. Crystallogr*, 2012, **45**, 849-854.
- 6. G. M. Sheldrick, Crystal Structure Refinement with SHELXL. Acta Crystallographica, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3.
- 7. G. M. Sheldrick, Crystal Structure Refinement with SHELXL, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3.
- 8. A. Spek, Single-Crystal Structure Validation with the Program Platon, *J. Appl. Crystallogr.*, 2003, **36**, 7-13.
- V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package TOPOSPRO, *Cryst. Growth Des.*, 2014, 14, 3576-3586.
- N. Seal, R. Goswami, M. Singh, R. S. Pillai and S. Neogi, An Ultralight Charged MOF as Fluoro-Switchable Monitor for Assorted Organo-Toxins: Size-Exclusive Dye Scrubbing and Anticounterfeiting Applications *via* Tb<sup>3+</sup> Sensitization, *Inorg. Chem. Front.*, 2021, 8, 296-310.
- M. Singh and S. Neogi, Urea-Engineering Mediated Hydrogen-Bond Donating Friedel– Crafts Alkylation of Indoles and Nitroalkenes in a Dual-Functionalized Microporous Metal–Organic Framework with High Recyclability and Pore-Fitting-Induced Size-Selectivity, *Inorg. Chem. Front.*, 2022, 9, 1897-1911.
- 12. J. Taesch, V. Heitz, F. Topić and K. Rissanen, Templated synthesis of a large and flexible covalent porphyrinic cage bearing orthogonal recognition sites, *Chem. Commun.*, 2012, **48**, 5118-5120.
- 13. M. Horeau, G. Lautrette, B. Wicher, V. Blot, J. Lebreton, M. Pipelier, D. Dubreuil, Y. Ferrand and I. Huc, Metal-Coordination-Assisted Folding and Guest Binding in Helical

Aromatic Oligoamide Molecular Capsules, Angew. Chem. Int. Ed., 2017, 56, 6823-6827.

- 14. L. Pan, K. M. Adams, H. E. Hernandez, X. Wang, C. Zheng, Y. Hattori and K. Kaneko, Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties, *J. Am. Chem. Soc.*, 2003, **125**, 3062-3067.
- 15. Y.-W. Li, J.-R. Li, L.-F. Wang, B.-Y. Zhou, Q. Chen and X.-H. Bu, Microporous Metal–Organic Frameworks with Open Metal Sites as Aorbents for Selective Gas Adsorption and Fluorescence Sensors for Metal Ions, *J. Mater. Chem. A*, 2013, **1**, 495-499.
- 16. P. Tshuma, B. C. E. Makhubela, C. A. Ndamyabera, S. A. Bourne and G. Mehlana, Synthesis and Characterization of 2D Metal-Organic Frameworks for Adsorption of Carbon Dioxide and Hydrogen, *Front. Chem.*, 2020, **8**, 581226.
- 17. C. Chen, M. Zhang, W. Zhang and J. Bai, Stable Amide-Functionalized Metal–Organic Framework with Highly Selective CO<sub>2</sub> Adsorption, *Inorg. Chem.*, 2019, **58**, 2729-2735.
- Y. E. Cheon and M. P. Suh, Selective Gas Adsorption in a Microporous Metal–organic Framework Constructed of Co<sup>II4</sup> Clusters, *Chem. Commun.*, 2009, DOI: 10.1039/B900085B, 2296-2298.
- 19. T. Wu, J. Zhang, C. Zhou, L. Wang, X. Bu and P. Feng, Zeolite RHO-Type Net with the Lightest Elements, *J. Am. Chem. Soc.*, 2009, **131**, 6111-6113.
- 20. P.-Q. Liao, D.-D. Zhou, A.-X. Zhu, L. Jiang, R.-B. Lin, J.-P. Zhang and X.-M. Chen, Strong and Dynamic CO<sub>2</sub> Sorption in a Flexible Porous Framework Possessing Guest Chelating Claws, *J. Am. Chem. Soc.*, 2012, **134**, 17380-17383.
- 21. W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. Kim and C. S. Hong, Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation, *Angew. Chem. Int. Ed.*, 2015, **54**, 5142-5146.
- 22. G. Zhang, G. Wei, Z. Liu, S. R. J. Oliver and H. Fei, A Robust Sulfonate-Based Metal– Organic Framework with Permanent Porosity for Efficient CO<sub>2</sub> Capture and Conversion, *Chem. Mater.*, 2016, **28**, 6276-6281.
- 23. M. Singh and S. Neogi, Selective and Multicyclic CO<sub>2</sub> Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal–Organic Framework Embracing Heteroatom-Affixed Pores, *Inorg. Chem.*, 2022, **61**, 10731-10742.
- 24. M.-H. Yu, P. Zhang, R. Feng, Z.-Q. Yao, Y.-C. Yu, T.-L. Hu and X.-H. Bu, Construction of a Multi-Cage-Based MOF with a Unique Network for Efficient CO<sub>2</sub> Capture, *ACS Appl. Mater. Interfaces*, 2017, **9**, 26177-26183.
- 25. B. Zheng, H. Liu, Z. Wang, X. Yu, P. Yi and J. Bai, Porous NbO-type metal–organic framework with inserted acylamide groups exhibiting highly selective CO<sub>2</sub> capture, *CrystEngComm*, 2013, **15**, 3517-3520.
- 26. N. Chatterjee and C. L. Oliver, A Dynamic, Breathing, Water-Stable, Partially Fluorinated, Two-Periodic, Mixed-Ligand Zn(II) Metal–Organic Framework Modulated by Solvent Exchange Showing a Large Change in Cavity Size: Gas and Vapor Sorption Studies, *Cryst. Growth Des.*, 2018, **18**, 7570-7578.
- 27. Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang and D. Zhao, Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal–Organic Frameworks for Optimal Carbon Dioxide Separation, *Inorg. Chem.*, 2016, **55**, 1134-1141.
- 28. Z.-R. Jiang, H. Wang, Y. Hu, J. Lu and H.-L. Jiang, Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion, *ChemSusChem*, 2015, **8**, 878-885.

- 29. Z. Hu, Y. Peng, Z. Kang, Y. Qian and D. Zhao, A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs, *Inorg. Chem.*, 2015, **54**, 4862-4868.
- 30. J. Park, J.-R. Li, Y.-P. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L.-B. Sun, P. B. Balbuena and H.-C. Zhou, A Versatile Metal–Organic Framework for Carbon Dioxide Capture and Cooperative Catalysis, *Chem. Commun.*, 2012, **48**, 9995-9997.
- 31. G. Chakraborty, P. Das and S. K. Mandal, Polar Sulfone-Functionalized Oxygen-Rich Metal–Organic Frameworks for Highly Selective CO<sub>2</sub> Capture and Sensitive Detection of Acetylacetone at ppb Level, *ACS Appl. Mater. Interfaces*, 2020, **12**, 11724-11736.
- 32. P. Cui, Y.-G. Ma, H.-H. Li, B. Zhao, J.-R. Li, P. Cheng, P. B. Balbuena and H.-C. Zhou, Multipoint Interactions Enhanced CO<sub>2</sub> Uptake: A Zeolite-like Zinc–Tetrazole Framework with 24-Nuclear Zinc Cages, *J. Am. Chem. Soc.*, 2012, **134**, 18892-18895.
- X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica and C. Schick, High and Selective CO<sub>2</sub> Uptake, H<sub>2</sub> Storage and Methanol Sensing on the Amine-decorated 12-connected MOF CAU-1, *Energy Environ. Sci.*, 2011, 4, 4522-4527.
- P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO<sub>2</sub> Adsorption Studies, *J. Am Chem. Soc.*, 2013, 135, 16801-16804.
- 35. S. S. Dhankhar, N. Sharma and C. M. Nagaraja, Construction of Bifunctional 2-fold Interpenetrated Zn(II) MOFs Exhibiting Selective CO<sub>2</sub> Adsorption and Aqueous-phase Sensing of 2,4,6-Trinitrophenol, *Inorg. Chem. Front.*, 2019, **6**, 1058-1067.
- 36. S. Chand, A. Pal, R. Saha, P. Das, R. Sahoo, P. K. Chattaraj and M. C. Das, Two Closely Related Zn(II)-MOFs for their Large Difference in CO<sub>2</sub> Uptake Capacities and Selective CO<sub>2</sub> Sorption, *Inorg. Chem.*, 2020, **59**, 7056-7066.
- 37. Y.-H. Tang, F. Wang, J.-X. Liu and J. Zhang, Diverse Tetrahedral Tetrazolate Frameworks with N-rich Surface, *Chem. Commun.*, 2016, **52**, 5625-5628.
- 38. G. Chakraborty, P. Das and S. K. Mandal, Efficient and Highly Selective CO<sub>2</sub> Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework, *Inorg. Chem.*, 2021, **60**, 5071-5080.
- C.-X. Chen, Z. Wei, J.-J. Jiang, Y.-Z. Fan, S.-P. Zheng, C.-C. Cao, Y.-H. Li, D. Fenske and C.-Y. Su, Precise Modulation of the Breathing Behavior and Pore Surface in Zr-MOFs by Reversible Post-Synthetic Variable-Spacer Installation to Fine-Tune the Expansion Magnitude and Sorption Properties, *Angew. Chem. Int. Ed.*, 2016, 55, 9932-9936.
- 40. Y. Ling, F. Yang, M. Deng, Z. Chen, X. Liu, L. Weng and Y. Zhou, Novel Iso-Reticular Zn(II) Metal–Organic Frameworks constructed by Trinuclear-Triangular and Paddle-Wheel Units: Synthesis, Structure and Gas Adsorption, *Dalton Trans.*, 2012, **41**, 4007-4011.
- J. S. Yeon, W. R. Lee, N. W. Kim, H. Jo, H. Lee, J. H. Song, K. S. Lim, D. W. Kang, J. G. Seo, D. Moon, B. Wiers and C. S. Hong, Homodiamine-functionalized metalorganic frameworks with a MOF-74-type extended structure for superior selectivity of CO2 over N-2, *Journal of Materials Chemistry A*, 2015, **3**, 19177-19185.
- B. Parmar, P. Patel, R. S. Pillai, R. K. Tak, R. I. Kureshy, N.-u. H. Khan and E. Suresh, Cycloaddition of CO<sub>2</sub> with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions, *Inorg. Chem.*, 2019, **58**, 10084-10096.

- 43. H. J. Park and M. P. Suh, Mixed-Ligand Metal–Organic Frameworks with Large Pores: Gas Sorption Properties and Single-Crystal-to-Single-Crystal Transformation on Guest Exchange, *Chem. Eur J.*, 2008, **14**, 8812-8821.
- 44. L. Wang, R. Zou, W. Guo, S. Gao, W. Meng, J. Yang, X. Chen and R. Zou, A New Microporous Metal-Organic Framework with a Novel Trinuclear Nickel Cluster for Selective CO<sub>2</sub> Adsorption, *Inorg. Chem. Commun.*, 2019, **104**, 78-82.
- M. Singh, A. S. Palakkal, R. S. Pillai and S. Neogi, N-Functionality Actuated Improved CO<sub>2</sub> Adsorption and Turn-On Detection of Organo-Toxins with Guest-Induced Fluorescence Modulation in Isostructural Diamondoid MOFs, *J. Mater. Chem. C*, 2021, 9, 7142-7153.
- 46. N. Seal and S. Neogi, Intrinsic-Unsaturation-Enriched Biporous and Chemorobust Cu(II) Framework for Efficient Catalytic CO<sub>2</sub> Fixation and Pore-Fitting Actuated Size-Exclusive Hantzsch Condensation with Mechanistic Validation, *ACS Appl. Mater. Interfaces*, 2021, **13**, 55123-55135.
- 47. W.-Y. Gao, T. Pham, K. A. Forrest, B. Space, L. Wojtas, Y.-S. Chen and S. Ma, The Local Electric Field Favours more than Exposed Nitrogen Atoms on CO<sub>2</sub> Capture: A Case Study on the rht-type MOF Platform, *Chem. Commun.*, 2015, **51**, 9636-9639.
- 48. B. Parmar, P. Patel, R. I. Kureshy, N.-u. H. Khan and E. Suresh, Sustainable Heterogeneous Catalysts for CO<sub>2</sub> Utilization by Using Dual Ligand ZnII/CdII Metal–Organic Frameworks, *Chem. Eur. J.*, 2018, **24**, 15831-15839.
- 49. H. Cui, Y. Ye, T. Liu, Z. A. Alothman, O. Alduhaish, R.-B. Lin and B. Chen, Isoreticular Microporous Metal–Organic Frameworks for Carbon Dioxide Capture, *Inorg. Chem.*, 2020, **59**, 17143-17148.
- 50. A. Pal, S. Chand, S. M. Elahi and M. C. Das, A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO<sub>2</sub> from CO<sub>2</sub>–N<sub>2</sub> and CO<sub>2</sub>–CH<sub>4</sub> gas mixtures with high CO<sub>2</sub> loading, *Dalton Trans.*, 2017, **46**, 15280-15286.
- 51. R. Maity, H. D. Singh, A. K. Yadav, D. Chakraborty and R. Vaidhyanathan, Waterstable adenine-based MOFs with polar pores for selective CO<sub>2</sub> capture, *Chem. Asian J.*, 2019, **14**, 3736-3741.
- 52. J. An, S. J. Geib and N. L. Rosi, High and selective CO<sub>2</sub> uptake in a cobalt adeninate metal–organic framework exhibiting pyrimidine- and amino-decorated pores, *J. Am. Chem. Soc.*, 2010, **132**, 38-39.
- 53. T. S. Sukhikh, E. Y. Filatov, A. A. Ryadun, K. A. Kovalenko and A. S. Potapov, Structural diversity and carbon dioxide sorption selectivity of Zinc(II) metal-organic frameworks based on Bis(1,2,4-triazol-1-yl)methane and terephthalic acid, *Molecules*, 2022, **27**, 6481.
- 54. S. Sen, S. Neogi, A. Aijaz, Q. Xu and P. K. Bharadwaj, Construction of noninterpenetrated charged metal–organic frameworks with doubly pillared layers: Pore modification and selective gas adsorption, *Inorg. Chem.*, 2014, **53**, 7591-7598.
- 55. S. Sen, S. Neogi, A. Aijaz, Q. Xu and P. K. Bharadwaj, Structural variation in Zn(II) coordination polymers built with a semi-rigid tetracarboxylate and different pyridine linkers: synthesis and selective CO<sub>2</sub> adsorption studies, *Dalton Trans.*, 2014, **43**, 6100-6107.
- 56. C. Hon Lau, R. Babarao and M. R. Hill, A Route to Drastic Increase of CO<sub>2</sub> Uptake in Zr Metal Organic Framework UiO-66, *Chem. Commun.*, 2013, **49**, 3634-3636.
- 57. C. Chen, B. Li, L. Zhou, Z. Xia, N. Feng, J. Ding, L. Wang, H. Wan and G. Guan, Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO<sub>2</sub> Adsorption, *ACS Appl. Mater. Interfaces*, 2017, **9**, 23060-23071.

- 58. H. Molavi, A. Eskandari, A. Shojaei and S. A. Mousavi, Enhancing CO<sub>2</sub>/N<sub>2</sub> adsorption selectivity via post-synthetic modification of NH<sub>2</sub>-UiO-66(Zr), *Microporous Mesoporous Mater.*, 2018, **257**, 193-201.
- 59. J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and H.-C. Zhou, Porous Materials with Pre-Designed Single-Molecule Traps for CO<sub>2</sub> Selective Adsorption, *Nat. Commun.*, 2013, **4**, 1538.
- 60. C. Chen, N. Feng, Q. Guo, Z. Li, X. Li, J. Ding, L. Wang, H. Wan and G. Guan, Template-directed fabrication of MIL-101(Cr)/mesoporous silica composite: Layerpacked structure and enhanced performance for CO<sub>2</sub> capture, *J. Colloid Interface Sci.*, 2018, **513**, 891-902.
- 61. D.-A. Yang, H.-Y. Cho, J. Kim, S.-T. Yang and W.-S. Ahn, CO<sub>2</sub> capture and conversion using Mg-MOF-74 prepared by a sonochemical method, *Energy Environ. Sci.*, 2012, **5**, 6465-6473.
- S. Senthilkumar, M. S. Maru, R. S. Somani, H. C. Bajaj and S. Neogi, Unprecedented NH<sub>2</sub>-MIL-101(Al)/n-Bu<sub>4</sub>NBr System as Solvent-Free Heterogeneous Catalyst for Efficient Synthesis of Cyclic Carbonates via CO<sub>2</sub> cycloaddition, *Dalton Trans.*, 2018, 47, 418-428.
- 63. Y. Li, X. Zhang, P. Xu, Z. Jiang and J. Sun, The Design of a Novel and Resistant Zn(PZDC)(ATZ) MOF Catalyst for the Chemical Fixation of CO<sub>2</sub> under Solvent-Free Conditions, *Inorg. Chem. Front.*, 2019, **6**, 317-325.
- A. C. Kathalikkattil, R. Roshan, J. Tharun, H.-G. Soek, H.-S. Ryu and D.-W. Park, Pillared Cobalt–Amino Acid Framework Catalysis for Styrene Carbonate Synthesis from CO<sub>2</sub> and Epoxide by Metal–Sulfonate–Halide Synergism, *ChemCatChem*, 2014, 6, 284-292.
- 65. L.-Q. Wei and B.-H. Ye, Efficient conversion of CO<sub>2</sub> via grafting urea group into a [Cu<sub>2</sub>(COO)<sub>4</sub>]-based metal–organic framework with hierarchical porosity, *Inorg. Chem.*, 2019, **58**, 4385-4393.
- R. A. Agarwal, A. K. Gupta and D. De, Flexible Zn-MOF Exhibiting Selective CO<sub>2</sub> Adsorption and Efficient Lewis Acidic Catalytic Activity, *Cryst. Growth Des.*, 2019, 19, 2010-2018.
- 67. B. Ugale, S. S. Dhankhar and C. M. Nagaraja, Exceptionally Stable and 20-Connected Lanthanide Metal–Organic Frameworks for Selective CO<sub>2</sub> Capture and Conversion at Atmospheric Pressure, *Cryst. Growth Des*, 2018, **18**, 2432-2440.
- 68. C. Feng, X. Cao, L. Zhang, C. Guo, N. Akram and J. Wang, Zn 1,3,5-Benzenetricarboxylate as an Efficient Catalyst for the Synthesis of Cyclic Carbonates from CO<sub>2</sub>, *RSC Adv.*, 2018, **8**, 9192-9201.
- 69. Z. Zhou, C. He, J. Xiu, L. Yang and C. Duan, Metal–Organic Polymers Containing Discrete Single-Walled Nanotube as a Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to Epoxides, *J. Am. Chem. Soc.*, 2015, **137**, 15066-15069.
- 70. R. Das, T. Ezhil, A. S. Palakkal, D. Muthukumar, R. S. Pillai and C. M. Nagaraja, Efficient Chemical Fixation of CO<sub>2</sub> from Direct Air under Environment-Friendly Cocatalyst and Solvent-free Ambient Conditions, *J. Mater. Chem. A*, 2021, **9**, 23127-23139.
- 71. M. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy and M. A. Carreon, Catalytic Activity of ZIF-8 in the Synthesis of Styrene Carbonate from CO<sub>2</sub> and Styrene Oxide, *Catal. Commun.*, 2013, **32**, 36-40.
- 72. H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong and W.-S. Ahn, CO<sub>2</sub> Adsorption and Catalytic Application of Co-MOF-74 Synthesized by Microwave Heating, *Catal. Today*, 2012, **185**, 35-40.

- 73. M. Singh, P. Solanki, P. Patel, A. Mondal and S. Neogi, Highly Active Ultrasmall Ni Nanoparticle Embedded inside a Robust Metal–Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO<sub>2</sub>, *Inorg. Chem.*, 2019, **58**, 8100-8110.
- 74. X. Guo, Z. Zhou, C. Chen, J. Bai, C. He and C. Duan, New rht-type metal–organic frameworks decorated with acylamide groups for efficient carbon dioxide capture and chemical fixation from raw power plant flue gas, *ACS Appl. Mater. Interfaces*, 2016, **8**, 31746-31756.
- 75. J. F. Kurisingal, Y. Rachuri, A. S. Palakkal, R. S. Pillai, Y. Gu, Y. Choe and D.-W. Park, Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO<sub>2</sub> and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone, ACS Appl. Mater. Interfaces, 2019, **11**, 41458-41471.
- 76. N. Seal, M. Singh, S. Das, R. Goswami, B. Pathak and S. Neogi, Dual-Functionalization Actuated Trimodal Attribute in an Ultra-Robust MOF: Exceptionally Selective Capture and Effectual Fixation of CO<sub>2</sub> with Fast-responsive, Nanomolar Detection of Assorted Organo-Contaminants in Water, *Mater. Chem. Front.*, 2021, **5**, 979-994.
- U. Patel, P. Patel, B. Parmar, A. Dadhania and E. Suresh, Synergy of Dual Functional Sites for Conversion of CO<sub>2</sub> in a Cycloaddition Reaction under Solvent-Free Conditions by a Zn(II)-Based Coordination Network with a Ladder Motif, *Cryst. Growth Des.*, 2021, 21, 1833-1842.
- 78. H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O. K. Farha, A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO<sub>2</sub> Fixation and Regioselective and Enantioretentive Epoxide Activation, J. Am. Chem. Soc., 2014, **136**, 15861-15864.
- 79. L.-G. Ding, B.-J. Yao, W.-L. Jiang, J.-T. Li, Q.-J. Fu, Y.-A. Li, Z.-H. Liu, J.-P. Ma and Y.-B. Dong, Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO<sub>2</sub> Adsorption and Catalytic Property for CO<sub>2</sub> Cycloaddition with Epoxides, *Inorg. Chem.*, 2017, **56**, 2337-2344.
- P. T. K. Nguyen, H. T. D. Nguyen, H. N. Nguyen, C. A. Trickett, Q. T. Ton, E. Gutiérrez-Puebla, M. A. Monge, K. E. Cordova and F. Gándara, New Metal–Organic Frameworks for Chemical Fixation of CO<sub>2</sub>, ACS Appl. Mater. Interfaces, 2018, 10, 733-744.
- 81. Y. Yuan, J. Li, X. Sun, G. Li, Y. Liu, G. Verma and S. Ma, Indium–Organic Frameworks Based on Dual Secondary Building Units Featuring Halogen-Decorated Channels for Highly Effective CO<sub>2</sub> Fixation, *Chem. Mater.*, 2019, **31**, 1084-1091.
- 82. H. Chen, L. Fan, X. Zhang and L. Ma, Nanocage-Based In<sup>III</sup>{Tb<sup>III</sup>}<sub>2</sub>-Organic Framework Featuring Lotus-Shaped Channels for Highly Efficient CO<sub>2</sub> Fixation and I<sub>2</sub> Capture, *ACS Appl. Mater. Interfaces*, 2020, **12**, 27803-27811.
- 83. R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D.-W. Kim and D.-W. Park, Dualporous metal organic framework for room temperature CO<sub>2</sub> fixation via cyclic carbonate synthesis, *Green Chem.*, 2016, **18**, 232-242.