Supporting Information

Anchoring Atomic Antimony in an Intercalative Mo–S Framework via Soft Covalent Bonding for Fast-charging and Longevous Sodium Ion Battery

Baixin Peng^{a,b#}, Zhuoran Lv^{a,b#}, Tianxun Cai^{a,b}, Zhiyuan Shi^a, Ce Zhou^c, Yusha Gao^{a,b}, Fuqiang Huang^{a,c*}

^aB. Peng, S. Xu, Z. Lv, Y. Gao, Prof. F. Huang

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^b B. Peng, Z. Lv, Y. Gao

Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China

°Prof. F. Huang

Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

[#]These authors contribute equally to this work.

E-mail: huangfq@mail.sic.ac.cn

Experimental section

Synthesis of Mo₂SbS₂: Mo₂SbS₂ was synthesized through typical solid state reaction. 2 mmol Mo (99.999%, Alfa Aesar Puratronic), 1 mmol Sb (99.999%, Alfa Aesar Puratronic) and 2 mmol S (99.999%, Alfa Aesar Puratronic) were grinded and mixed uniformly and put into a pre-evacuated quartz tube. Then the quartz tube was sealed by hydrogen flame and putted into a muffle furnace with temperature of 1173 K for 12 hours. After cooling down to room temperature naturally, the micro sphere Mo₂SbS₂ sample stacked by nano rods was obtained. The as obtained sample was directly used to fabricate electrode slurry.

Synthesis of NaNi_{0.5}Mn_{0.5}O₂: Stoichiometric amounts of Na₂CO₃, NiO, and Mn₂O₃ were ball milled for 2 h and pressed into pellet. Then the pellet was annealed at 1173 K in a muffle furnace for 24 h. After cooling to room temperature, the black NaNi_{0.5}Mn_{0.5}O₂ powder was obtained.

Material characterization: X-ray diffraction patterns of Mo₂SbS₂ samples were obtained on a Bruker D8 Advance diffractometer equipped with mirror-monochromatic Cu K α radiation ($\lambda = 0.15406$ nm) at a scan rate of 12° min⁻¹ with 2 θ from 5° to 80°. The *in-situ* XRD spectra were obtained on a live discharge/charge process in a cell purchased from Bejing Scistar Technology *Co. Ltd.* The morphology of Mo₂SbS₂ was investigated by a JEOL (JSM6510) scanning electron microscope equipped with energy dispersive X-ray spectroscopy (EDXS, Oxford Instruments) and aberration-corrected field transmission electron microscopy (FEI Tecnai F20, USA). Raman spectra was obtained from a Jobin-Yvon LabRAM HR-800 spectrometer with a laser excitation at 532 nm. Electrical conductivity test was conducted on a physical properties measurement system (PPMS, Quantum Design). The High resolution XPS spectra were obtained from an X-ray photoelectron spectrometer (XPS, Thermo Scientific, ESCALAB 250, USA).

Electrochemical characterization: The composite electrodes were fabricated from the active materials Mo_2SbS_2 powder (80 wt%), super P (10 wt%) and sodium alginate (SA) binder, and deionized water was utilized as solvent to get a slurry. Then the slurry was coated evenly on a copper foil using a blade with mass loading of ~1.5 mg cm⁻². The electrode was then dried at a vacuum oven at 80 °C for 8 h. The half cells were assembled in coin-type cells (MTI corporation-CR2032) within an Ar gas filled glove box. A piece of sodium was utilized as counter electrode. For the full battery, cathode was prepared by mixing $NaNi_{0.5}Mn_{0.5}O_2$ (80 wt%), Super P (10 wt%) and polyvinylidene fluoride (PVDF) binder (10 wt%) homogeneously in N-methyl pyrrolidinone (NMP) solvent to get a slurry. Then the slurry was coated on an aluminum foil. The anode was made through the same process for half-cell. The N : P ratio of full cell is 1.1 : 1. The electrolyte is composed of 1 M NaPF₆ in DME solution. Glass fiber is utilized as a separator.

A CHI1760e electrochemical workstation was used for the cyclic voltammetry (CV) tests with a potential range between 3 V and 0.01 V at different scan rates. A Land CT2001A tester (Wuhan, China) was applied to get the galvanostatic cycling performance and the GITT voltage profile of the assembled cells with a cutoff voltage

between 3 V and 0.01 V at room temperature. Electrochemical impedance spectroscopy (EIS) was also tested with a CHI1760e electrochemical workstation at the frequency of 0.1 to 10000 Hz.

Theoretical capacity calculation: The electrode reactions in Mo₂SbS₂ anode based on our results are summarized as following:

 $Mo_2SbS_2 + 5Na^+ + 5e^- \rightarrow (Na_3Sb)Na_2Mo_2S_2$

The theoretical capacity ($C_t = 355 \text{mA h g}^{-1}$) is calculated according to equation:

$$C_t = nF/3.6M_r \tag{1}$$

where, n is the number of transferred electrons, F is Faraday constant (96485 C mol⁻¹), M_r is the molar mass of Mo₂SbS₂ (378 g mol⁻¹).

Density functional theory (DFT) calculation details: The Vienna initio simulation package (VASP) code with the projector augmented wave (PAW) method were used to perform our DFT calculation. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was used in our calculations. The kinetic energy cutoff is set to be 300 eV for the expanding the wave functions into a plane-wave basis. For the structure optimizations, $5\times10\times4$ k-points were used for the conventional cell. The internal atomic positions were relaxed until the force is less than 0.01 eV/Å. The energy convergence criterion was 10^{-5} eV. For the band structure calculation, high-symmetry points in the Brillouin zone (G, Z, D, B, G, A, E, Z, C, Y and G corresponding to (0, 0, 0), (0, 0.5, 0), (0, 0.5, 0.5), (0, 0, 0.5), (0, 0, 0), (-0.5, 0, 0.5), (0, 0.5, 0), (-0.5, 0.5), (0, 0.5, 0), (-0.5, 0.5), (0, 0.5, 0), (-0.5, 0.5, 0), (-0.5, 0.5), (0, 0, 0) points) were utilized.

Figure S1. a, b) SEM images of Mo₂SbS₂ micro sphere; c-f) element mapping images of Mo, Sb and S.

	Observed	Standard
(001)	62	79
(100)	100	100
(012)	71	89
(20-3)	70	68
(112)	97	82

Table R1. Relative intensities of the top five XRD peaks of Mo_2SbS_2 .

Figure S2. a) Band structure of Mo_2SbS_2 ; b) PDOS of Mo, Sb and S.

Figure S3. GCD profiles of Mo₂SbS₂ anode at initial 3 cycles.

Figure S4. Cycling performance of Mo₂SbS₂ anode at current density of 50 C.

Figure S5. a) XRD pattern of NaNi_{0.5}Mn_{0.5}O₂; b-c) SEM images of NaNi_{0.5}Mn_{0.5}O₂ at different resolution.