Electronic supplementary information for

Dy $@D_2(21)$ -C₈₄: Isolation and crystallographic characterization of a rare trivalent C₈₄-based

monometallofullerene

Wangqiang Shen,*^a Lei Lou,^b Yiao Wei,^c Lipiao Bao,^c Guangqing Xu,^a Peng Jin,^{*b} Jun Lv^{*a} and Xing Lu^{*c}

^a School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China

^b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China

^c School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Table of Contents

Experimental details

Figure S1. Isolation of raw soot extract on a Buckyprep column.

Scheme S1. The process of separation of Dy-EMFs from F-5 with SnCl₄.

Figure S2. Isolation schemes of $Dy@D_2(21)$ -C₈₄.

Table S1. Details of the vis-NIR absorptions of $Dy@D_2(21)-C_{84}$.

Table S2. Crystallographic Data of Dy@*D*₂(21)-C₈₄.

Figure S3. Positions of the disordered dysprosium sites in $Dy@D_2(21)-C_{84}$.

Table S3. The fractional occupancies of the disordered dysprosium sites in $Dy@D_2(21)-C_{84}$.

Table S4. Relative energies of low-lying Dy@C₈₄ isomers with different spin multiplicities.

Figure S4. Occupied f-type localized molecular orbitals of $Dy@D_2(21)-C_{84}$ and $U@D_2(21)-C_{84}$.

Figure S5. Spin density distribution of $Dy@D_2(21)-C_{84}$ with spin population values for the Dy atom.

Figure S6. Orbital interaction diagram of $Dy@D_2(21)-C_{84}$.

Figure S7. Optimized structures and encapsulation energies (kcal/mol) of $M@C_{84}(M = Sm, Eu, U)$.

Table S5. Relative energies of $M@C_{84}$ with different spin multiplicities (*M*).

References.

Experimental details

General characterizations. High-performance liquid chromatography (HPLC) was conducted on an LC-908 machine (Japan Analytical Industry Co., Ltd.) with toluene as mobile phase. Matrixassisted laser desorption ionization time of flight (LDI-TOF) mass spectrometry was measured on a BIFLEX III spectrometer (Bruker Daltonics Inc., Germany). Vis-NIR absorption spectra were measured on a PE Lambda 750S spectrophotometer (PerkinElmer, US) in CS₂. Cyclic voltammograms (CV) was measured in o-dichlorobenzene on a CHI-660E workstation, with 0.05 M TBAPF₆ as supporting electrolyte. A three-electrode cell consisting of a Pt counter electrode, a glassy carbon working electrode, and a silver reference electrode was used for each CV measurement.

Synthesis and isolation of $Dy@D_2(21)-C_{84}$. $Dy@D_2(21)-C_{84}$ was synthesized in a modified Krätschmer–Huffman fullerene generator by vaporizing composite graphite rods ($\Phi 8 \times 100$ mm) containing a mixture of Dy_2O_3 and graphite powder (molar ratio of Dy/C = 1:12) with the addition of 300 mbar He gas. After synthesis, the raw soot was collected and extracted by using CS₂, then the solvent was removed by using a rotary evaporator. The solid was redissolved in toluene, the solution was filtered, and then subjected to HPLC separations. The crude extraction was injected into a Buckyprep column with toluene as eluent, fraction F-5 was collected in 55-61 min (Figure S1). Subsequently, fraction F-5 was treated with $SnCl_4$ which leaded to the rapid enrichment of SnCl₄-EMF complexes as precipitate, which easily decompose to provide pure Dy-containing EMF powders by a simple water treatment [S1,S2]. The powders were dissolved in a CS₂ solution, the solution was dried by a rotary evaporator, and the obtained solid residue was dissolved in toluene and filtered to get the clear solution containing Dy-containing EMF (as shown in Scheme S1). F-5p was separated through a two-step HPLC separation with toluene as eluent. The first step was performed on a Buckyprep-M column, and fraction F-5p-3 was collected in 32-35 min (Figure S2a). Then, fraction F-5p-3 was reinjected into a Buckyprep column for recycling separation, and F-5p-3-1 ($Dy@C_{84}$) was collected in 119-137 min (Figure S2b).

Single-Crystal XRD measurements of $Dy@D_2(21)$ -C₈₄. Crystalline block of $Dy@D_2(21)$ -C₈₄ was obtained by layering a benzene solution of Ni^{II}(OEP) over a CS₂ solution of $Dy@C_{84}$ in a glass tube. Over a 20-day period, the two solutions diffused together, and black crystals formed. Single-crystal

XRD measurement of $Dy@D_2(21)-C_{84}$ was performed at 100 K at BL17B station of Shanghai Synchrotron Radiation Facility. The multi-scan method was used for absorption corrections. The structure was solved by direct method and were refined with SHELXL-2014/7^[S3]. CCDC-2246929 contains the supplementary crystallographic data for this paper. Details of the structural refinement can be found in **Table S2**.

Computational details. Density functional theory calculations were carried out by using the M06- $2X^{[S4]}$ functional in conjunction with the 6-31G* basis set for C^[S5] and SDD basis set and corresponding effective core potential for metals^[S6] (denoted as 6-31G*~SDD), as implemented in the Gaussian 16 software package^[S7].

Figure S1. Isolation of raw soot extract on a Buckyprep column. Conditions: $\Phi = 20 \text{ mm} \times 250 \text{ mm}$, eluent = toluene, flow rate = 9.99 mL/min, detection wavelength = 330 nm, room temperature.

Scheme S1. The process of separation of Dy-EMFs from F-5 with SnCl₄.

Figure S2. Isolation schemes of $Dy@D_2(21)-C_{84}$. HPLC chromatograms of (a) F-5p-1 obtained by a Buckyprep-M column and (b) F-5p-3-1($Dy@D_2(21)-C_{84}$) obtained by a Buckyprep column. Conditions: $\Phi = 20 \text{ mm} \times 250 \text{ mm}$, eluent = toluene, flow rate = 9.99 mL/min, detection wavelength = 330 nm, room temperature.

Compound	Vis-NIR absorption bands (nm)	Onset (nm)	Optical Bandgap (eV) ^a
Dy@D ₂ (21)-C ₈₄	593, 646, 773, 836, 959	1485	0.84

Table S1. Details of the vis-NIR absorptions of $Dy@D_2(21)-C_{84}$.

^a Optical Bandgap (eV) \approx 1240/onset (nm).

	$\mathbf{D} = \mathbf{O} \mathbf{D} (\mathbf{O} \mathbf{I}) \mathbf{C} = \mathbf{M}^{\mathrm{H}} (\mathbf{O} \mathbf{D} \mathbf{D}) \mathbf{I} \mathbf{C} (\mathbf{C} \mathbf{H})$
Compound	$Dy(@D_2(21)-C_{84} \cdot N_1^n(OEP) \cdot 1.5(C_6H_6)$
Т, К	100(2)
λ, Å	0.6525
color/habit	black / block
Empirical formula	C258 H106 Dy2 N8 Ni2
fw	3759.86
crystal system	monoclinic
space group	C2/m
a, Å	27.054(1)
b, Å	17.051(6)
c, Å	17.770(6)
α, deg	90.000
β, deg	106.784(1)
γ, deg	90.000
V, Å ³	7848.0(5)
ρ, g/cm ³	1.591
μ, mm ⁻¹	0.996
R1 [reflections with I>2σ(I)]	0.1726
wR2 (all data)	0.3735

Table S2. Crystallographic Data of $Dy@D_2(21)$ -C₈₄.

Figure S3. Positions of the disordered dysprosium sites in $Dy@D_2(21)-C_{84}$. Atoms labeled with an "A" are generated by crystallographic operation.

EMFs	Fractional occupancy of the Dy positions					
Dy@D (21) C	Dy1/Dy1A	Dy2/Dy2A	Dy3/Dy3A	Dy4/Dy4A	Dy5	Dy6/Dy6A
$Dy(@D_2(21)-C_{84})$	0.144	0.122	0.085	0.081	0.066	0.035

Table S3. The fractional occupancies of the disordered dysprosium sites in $Dy@D_2(21)-C_{84}$.

The atom with a suffix 'A' is generated by crystallographic operation.

 Table S4. Relative energies of low-lying $Dy@C_{84}$ isomers with different spin multiplicities (*M*). The ground state for each isomer is highlighted in bold.

isomer	M	imes E(kcal/mol)
$\mathbf{D} \cap \mathcal{C}(12) \subset \mathbf{C}$	5	0.8
$Dy(a)C_2(13)-C_{84}$	7	0.0
	5	53.0
$Dy(a)D_2(21)-C_{84}$	7	1.7
	5	34.2
$Dy(a)D_{3d}(19)-C_{84}$	7	2.4
$\mathbf{D}_{\mathbf{r}} \otimes \mathcal{O}(12) \mathbf{C}$	5	4.0
$Dy(a)C_1(12)-C_{84}$	7	4.7
$\mathbf{D}_{\mathbf{v}} \otimes C_{\mathbf{v}}$ (17) $C_{\mathbf{v}}$	5	6.3
$Dy(0) C_{2\nu}(17) - C_{84}$	7	7.9
	5	8.7
$Dy(\underline{a}C_{s}(10)-C_{84})$	7	9.1
D@D (22) C	5	22.5
$Dy(@D_2(22)-C_{84})$	7	9.4
$\mathbf{D}_{\mathbf{r}} \otimes C(0) C$	5	9.9
$Dy(u)C_2(9)-C_{84}$	7	9.9
\mathbf{D}	5	28.1
$Dy(\underline{w}C_{2\nu}(7)-C_{84})$	7	16.1
\mathbf{D} - $\mathcal{O}C(11)$	5	21.6
$Dy(\underline{w}C_2(11)-C_{84})$	7	16.2
D@D (22) C	5	16.3
$Dy(@D_{2d}(23)-C_{84})$	7	20.8
	5	19.2
$Dy(a)C_2(8)-C_{84}$	7	19.7
	5	23.5
$Dy(a)C_2(15)-C_{84}$	7	27.5
	5	69.3
$Dy(a)C_2(16)-C_{84}$	7	29.0

Figure S4. Occupied f-type localized molecular orbitals of (a) Dy@D₂(21)-C₈₄ and (b) U@D₂(21)-C₈₄.

Figure S5. Spin density distribution of $Dy@D_2(21)-C_{84}$ (isovalue: ± 0.003 au) with spin population values for the Dy atom.

Figure S6. Orbital interaction diagram of $Dy@D_2(21)-C_{84}$. Occupied and unoccupied orbitals are denoted by black and blue lines, respectively. Three α/β LUMOs of C_{84} contribute to the HOMOs of $Dy@D_2(21)-C_{84}$, thus confirming the acceptance of three electrons from the Dy atom.

Figure S7. Optimized structures and encapsulation energies (kcal/mol) of $M@C_{84}(M = Sm, Eu, U)$. C: gray, Sm: light green, Eu: orange, U: blue.

Table S5. Relative energies of M@C₈₄ with different spin multiplicities (M) at the M06-2X/6- $31G^*\sim$ SDD level of theory. The ground state for each molecule is highlighted in bold.

$\begin{array}{cccccc} & 6 & 15.9 \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\$	Species	М	ΔE (kcal/mol)
$\begin{array}{cccccc} \operatorname{Eu}@C_2(11)-\operatorname{C}_{84} & 8 & 0.0 \\ & 10 & 16.3 \\ & & & & & & & & & & & & & & & & & & $		6	15.9
$\begin{array}{ccccccc} & 10 & 16.3 \\ & 6 & 24.3 \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$	$Eu@C_2(11)-C_{84}$	8	0.0
$\begin{array}{cccccccc} & 6 & 24.3 \\ & & & 0.0 \\ & & & 10 & 18.2 \\ & & & 10 & 18.2 \\ & & & 5 & 14.9 \\ & & & 5 & 14.9 \\ & & & & 9 & 15.0 \\ & & & & 9 & 15.0 \\ & & & & 9 & 15.0 \\ & & & & 9 & 15.0 \\ & & & & 6 & 100.0 \\ & & & & & 6 & 100.0 \\ & & & & & 6 & 100.0 \\ & & & & & & 6 & 100.0 \\ & & & & & & & 6 & 100.0 \\ & & & & & & & & & & & \\ & & & & & & $		10	16.3
$\begin{array}{c cccc} & 8 & 0.0 \\ & 10 & 18.2 \\ & 5 & 14.9 \\ & 5 & 14.9 \\ & 5 & 14.9 \\ & 9 & 15.0 \\ & 9 & 15.0 \\ & 9 & 15.0 \\ & 6 & 100.0 \\ & & 10 & 29.7 \\ & & 10 & 29.7 \\ & & 10 & 29.7 \\ & & 5 & 78.7 \\ & & & 5 & 78.7 \\ & & 5 & 78.7 \\ & & 5 & 78.7 \\ & & 9 & 33.8 \\ & & & 0.0 \\ & & 9 & 33.8 \\ & & & & 0.0 \\ & & & 9 & 33.8 \\ & & & & & 0.0 \\ & & & & & 5 & 5.3 \\ & & & & & & 0.0 \\ & & & & & & 5 & 5.3 \\ & & & & & & & 0.0 \\ & & & & & & & & 0.0 \\ & & & & & & & & 0.0 \\ & & & & & & & & & 0.0 \\ & & & & & & & & & 0.0 \\ & & & & & & & & & & 0.0 \\ & & & & & & & & & & 0.0 \\ & & & & & & & & & & & 0.0 \\ & & & & & & & & & & & & 0.0 \\ & & & & & & & & & & & & & 0.0 \\ & & & & & & & & & & & & & & & 0.0 \\ & & & & & & & & & & & & & & & & & & $		6	24.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Eu@ $D_{3d}(19)$ -C ₈₄	8	0.0
$\begin{array}{cccc} 5 & 14.9 \\ Sm@D_{3d}(19)-C_{84} & 7 & 0.0 \\ 9 & 15.0 \\ 6 & 100.0 \\ Eu@C_2(13)-C_{84} & 8 & 0.0 \\ 10 & 29.7 \\ 5 & 78.7 \\ Sm@C_2(13)-C_{84} & 7 & 0.0 \\ 9 & 33.8 \\ U@C_s(15)-C_{84} & 3 & 0.0 \\ 5 & 5.3 \\ U@D_2(21)-C_{84} & 3 & 10.8 \\ 5 & 0.0 \\ U@C_2(8)-C_{84} & 3 & 0.0 \\ U@C_2(8)-C_{84} & 5 & 0.0 \\ 10 & 3 & 0.0 \\ 5 & 2.1 \end{array}$		10	18.2
$\begin{array}{cccccccc} & & & & & & & & & & & & & & & $		5	14.9
$\begin{array}{ccccccc} 9 & 15.0 \\ 6 & 100.0 \\ \hline Eu@C_2(13)-C_{84} & {\color{black}{8}} & {\color{black}{0.0}} \\ 10 & 29.7 \\ 5 & 78.7 \\ \hline Sm@C_2(13)-C_{84} & {\color{black}{7}} & {\color{black}{0.0}} \\ 9 & 33.8 \\ \hline U@C_s(15)-C_{84} & {\color{black}{3}} & {\color{black}{0.0}} \\ 5 & 5.3 \\ \hline U@D_2(21)-C_{84} & {\color{black}{3}} & {\color{black}{0.0}} \\ \hline U@C_2(8)-C_{84} & {\color{black}{3}} & {\color{black}{0.0}} \\ \hline S & {\color{black}{0.0}} \\ \hline U@C_2(8)-C_{84} & {\color{black}{3}} & {\color{black}{0.0}} \\ \hline S & {\color{black}{2.1}} \end{array}$	Sm@D _{3d} (19)-C ₈₄	7	0.0
$\begin{array}{ccccccc} & 6 & 100.0 \\ Eu@C_2(13)-C_{84} & 8 & 0.0 \\ 10 & 29.7 \\ 5 & 78.7 \\ Sm@C_2(13)-C_{84} & 7 & 0.0 \\ 9 & 33.8 \\ U@C_s(15)-C_{84} & 3 & 0.0 \\ 5 & 5.3 \\ U@D_2(21)-C_{84} & 3 & 10.8 \\ U@C_2(8)-C_{84} & 5 & 0.0 \\ U@C_2(8)-C_{84} & 5 & 2.1 \\ \end{array}$		9	15.0
Eu@ $C_2(13)$ -C ₈₄ 8 0.0 10 29.7 5 78.7 Sm@ $C_2(13)$ -C ₈₄ 7 0.0 9 33.8 U@ $C_s(15)$ -C ₈₄ 3 0.0 5 5.3 U@ $D_2(21)$ -C ₈₄ 3 10.8 5 0.0 U@ $C_2(8)$ -C ₈₄ 5 0.0 5 2.1		6	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Eu@C_2(13)-C_{84}$	8	0.0
$\begin{array}{ccccccc} 5 & 78.7 \\ Sm@C_2(13)-C_{84} & 7 & 0.0 \\ 9 & 33.8 \\ U@C_s(15)-C_{84} & 3 & 0.0 \\ 5 & 5.3 \\ U@D_2(21)-C_{84} & 3 & 10.8 \\ 5 & 0.0 \\ U@C_2(8)-C_{84} & 3 & 0.0 \\ 5 & 2.1 \end{array}$		10	29.7
$\begin{array}{ccccccc} \operatorname{Sm}@C_2(13)-\operatorname{C}_{84} & 7 & 0.0 \\ & 9 & 33.8 \\ & & \\ &$		5	78.7
9 33.8 $U@C_s(15)-C_{84}$ 3 0.0 5 5.3 $U@D_2(21)-C_{84}$ 3 10.8 5 0.0 $U@C_2(8)-C_{84}$ 3 0.0 5 2.1	Sm@C ₂ (13)-C ₈₄	7	0.0
U@ $C_s(15)$ -C ₈₄ 3 0.0 5 5.3 U@ $D_2(21)$ -C ₈₄ 3 10.8 5 0.0 U@ $C_2(8)$ -C ₈₄ 3 0.0 5 2.1		9	33.8
$U@C_s(15)-C_{84}$ 5 5.3 $U@D_2(21)-C_{84}$ 3 10.8 5 0.0 $U@C_2(8)-C_{84}$ 3 0.0 5 2.1		3	0.0
U@D_2(21)-C_{84} 3 10.8 5 0.0 J 3 0.0 J 5 2.1	$U(\underline{w}C_{s}(15)-C_{84})$	5	5.3
$U@D_2(21)-C_{84}$ 5 0.0 $U@C_2(8)-C_{84}$ 3 0.0 5 2.1		3	10.8
$U@C_2(8)-C_{84}$ 3 0.0 5 2.1	$U(@D_2(21)-C_{84})$	5	0.0
$5 \qquad 2.1$	$U \otimes C \otimes C$	3	0.0
	$U(\underline{w}C_2(\delta)-C_{84})$	5	2.1

References

_

[S1] C. Pan, L. Bao, X. Yu, H. Fang, Y. Xie, T. Akasaka, X. Lu, Facile Access to Y_2C_{2n} (2n = 92–

130) and Crystallographic Characterization of $Y_2C_2@C_1(1660)$ - C_{108} : A Giant Nanocapsule with a Linear Carbide Cluster, *ACS Nano*. 2018, **12**, 2065–2069.

- [S2] K. Akiyama, T. Hamano, Y. Nakanishi, E. Takeuchi, S. Noda, Z. Wang, S. Kubuki, H. Shinohara, Non-HPLC Rapid Separation of Metallofullerenes and Empty Cages with TiCl₄ Lewis Acid, J. Am. Chem. Soc. 2012, **134**, 9762–9767.
- [S3] G. M. Sheldrick, Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.
- [S4] Y. Zhao, D. G. Truhlar, The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals, *Theor. Chem. Acc.* 2008, **120**, 215–241.
- [S5] W. J. Hehre, R. Ditchfield, J. A. Pople, Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261.
- [S6] X. Cao, M. Dolg, Segmented Contraction Scheme for Small-Core Lanthanide Pseudopotential Basis Sets. J. Mol. Struct. THEOCHEM. 2002, 581, 139–147.
- [S7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson and others, Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT, 2019.