Supporting Information

An ultra-stable Cu^I₁₂ cluster built from a Cu^I₆ precursor sandwiched

by two Cu^I₃-thiacalixarene units for efficient photothermal conversion

Zuohu Zhou, Linmeng Xu, Guiyan Zhao,* Kun, Zhou, Baokuan Chen, Yanfeng Bi* School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001 (P. R. China). E-mail: gyzhao@lnpu.edu.cn (G. Y. Zhao); biyanfeng@lnpu.edu.cn (Y. F. Bi)

ESI Contents

- (1) Experimental details (p2-p3)
- (2) Figures (H₄TC4A, PXRD pattern, FT-IR spectrum, TGA curve, Crystal structure,
- XPS spectrum (p4-p8)
- (3) Tables (Crystal Data, bond lengths, bond angles for Cu_{12}) (p9-p12)

1 Experiment

1.1 Synthesis of Cu^I₆(2-PyS)₆ (2-PySH = 2-Pyridinethiol)

A mixture of 2-Pyridinethiol (0.22 g, 2.0 mmol), CuCl (0. 20 g, 2.0 mmol), MeOH (5.0 mL), and DMA (5.0 mL) in a 20 mL Teflon-lined autoclave which was kept at 130 °C for one day and then slowly cooled to 20 °C. ca. 0.20 g red block crystals were obtained in 60.0% yield (basis on copper atom). The crystals were isolated by filtration and then washed with 1:1MeOH-DMA and dry in air.

1.2 Chemical stability of Cu₁₂

 Cu_{12} is ultra-stable in the air by comparing the PXRD patterns from single-crystal Xray diffraction (SCRD) with that exposure for 6 months. We also tested the stability of Cu_{12} under different conditions. We soaked Cu_{12} in 1 M HCl or 1 M NaOH for 48h or soaked it in 1 M H₂O₂ solution for 6h. Furthermore, we soaked freshly prepared Cu_{12} in various solvents for 48 h, including DMA, acetonitrile, acetone, dichloromethane, trichloromethane, methanol, ethanol, and mixed solvent (DMA: ethanol=1:1). The crystallization of Cu_{12} is maintained well, suggesting the outstanding stability of Cu_{12} in water solutions and various organic solvents.

1.3 Density functional theory (DFT) calculations

The model structure was obtained from single-crystal X-ray diffraction. The structure was optimized in Gaussian 16 program (Gaussian 16, Revision C. 01. Gaussian, Inc., Wallingford CT. 2016) with B3LYP functional,¹ def2-SVP base set,² and DFT-D3 dispersion correction.³ Multiwfn, a multifunctional wave function analysis program⁴, is used to generate the lattice file of molecular orbitals, and the three-dimensional graph is drawn by the VMD program.⁵

1.4 Solid photothermal experiment:

The light source is a 660 nm laser, with a light intensity of 0.4 W•cm². The sample was made into 1 cm² slice on 2.0×2.0 cm² glass sheets, and the distance between the laser lamp and the sample was changed to make the spot completely coincide with the sample. The temperature of the sample was measured by FL-IR infrared thermography. The test environmental conditions are kept at ca. 20 °C and humidity 30 %.

Diagram of the photothermal experiment for solid

1.5 Solvent photothermal experiment:

Add 15 mg of the Cu_{12} to 0.5 mL of H₂O or DMF, and the solid Cu_{12} was irradiated under a 660 nm laser with a power density of 0.4 W/cm², and the temperature was recorded by a thermal imager.

Diagram of the photothermal experiment in solvent

References

- T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), *Chem. Phys. Lett.*, 2004, **393**, 51–57.
- 2 F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 3 S. Grimme, Density functional theory with London dispersion corrections, *WIREs Comput Mol Sci*, 2011, 1, 211–228.
- 4 T. Lu and F.-W. Chen, Multiwfn: A multifunctional wavefunction analyzer, *J. Comput. Chem.*, 2012, **33**, 580–592.
- 5 W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics J. Mol. Graph. Model., 1996, 14, 33–38.

Figures

Fig. S1 *p-tert*-Butylthiacalix[4]arene (H₄TC4A)

Fig. S2 (a) The PXRD patterns of $Cu_{12}.$ (b) The PXRD patterns of $Cu_{6}.$

Fig. S3 FT-IR spectra of the Cu₁₂

Fig. S5 The PXRD of the final decomposition from TGA

For investigating the thermal stability of Cu_{12} , the thermogravimetric analysis was carried out under an N₂ atmosphere from 20 to 900°C with a heating rate of 10°C min⁻¹ (Fig. S4). The weight loss is 0.92% below 100°C, which was close to the theoretical 0.63% of releasing one water molecule per Cu_{12} . The Cu_{12} can keep its skeleton before 320 °C. Then significant weight loss (49.2%) took place until the curve reached relatively stable. The residue was determined to be $Cu_{1.81}$ S according to PXRD analysis (Fig. S5).

Fig. S6 Asymmetric unit and metal coordination environment of Cu_{12} (up) and Cu···Cu distance (Å) in Cu^{I_3} -HTC4A and " $Cu_6(2$ -PyS)₆" units (below).

Fig. S7 (a) XPS spectrum and (b) High-resolution XPS spectra of Cu $_{2p}$ for Cu $_{12}$ and Cu₆.

XPS spectrum revealed the presence of the cluster components and the mono-valence nature of Cu centers. High-resolution XPS spectra of Cu 2p for Cu_{12} shifted to higher energy compared with that for Cu_6 , which suggests that the electron density of Cu is lower in Cu_{12} than in Cu_6 .

Fig. S8 The packing diagrams of Cu_{12} along the c-axis. The red ball represents the solvent H₂O in the crystal lattice

Fig. S9 Two kinds of interactions between Cu_6 clusters

Fig. S10. PXRD pattern of Cu_{12} after the solvent photothermal experiments

Tables

Table S1. Crystal data and structural refinement parameters

Complex	Cu ₁₂	Cu ₆		
formula	$C_{110}H_{118}N_6Cu_{12}O_9S_{14}\\$	$C_{30}H_{24}Cu_6N_6S_6$		
Formula weight	2877.40	1042.15		
Crystal system	tetragonal	monoclinic		
space group	<i>P</i> 4 ₂ / <i>m b c</i> (No.135)	<i>P 21/n</i> (No.14)		
$a(\text{\AA})$	22.2481(9)	9.5857(8)		
$b(\text{\AA})$	22.2481(9)	16.0466(11)		
$c(\text{\AA})$	24.0155(12)	12.2754(10)		
α(°)	90	90		
β(°)	90	108.900(2)		
γ(°)	90	90		
Volume(Å ³)	11887.1(11)	1786.4(2)		
Ζ	4	2		
Temperature(K)	296(2)	296(2)		
Dc(g/cm ³)	1.608	1.937		
$\mu(\text{mm}^{-1})$	2.401	3.891		
Reflections collected	51587	26990		
Unique data	5411	3642		
<i>R</i> _{int}	0.0820	0.0644		
GOF on F^2	1.067	0.993		
$^{a}R_{1}$ [I>2sigma(I)]	0.0469	0.0304		
^b wR ₂	0.1231	0.0795		

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}wR_{2} = \{\Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}]\}^{1/2}$

Bond	Distance	r	Value	Bond	Distance	r	Value
Cu1-O2	1.992 (3)	1.679	0.429	Cu2-O2 ⁱ	2.061 (3)	1.679	0.356
Cu1-O1	2.111 (4)	1.679	0.311	Cu2-O2	2.061 (3)	1.679	0.356
Cu1-S4	2.1732 (14)	1.86	0.429	Cu2-S5	2.176 (2)	1.86	0.426
Cu1-S1	2.3409 (15)	1.86	0.273	Cu2-S2	2.310 (2)	1.86	0.296
valence		1.442	valence			1.434	
Bond	Distance	r	Value	Bond	Distance	r	Value
Cu3-N1	1.995 (5)	1.61	0.353	Cu4-N2	1.985 (6)	1.61	0.363
Cu3-S5 ⁱⁱ	2.2394 (14)	1.86	0.359	Cu4-S4 ⁱⁱⁱ	2.2474 (15)	1.86	0.351
Cu3-S4 ⁱⁱⁱ	2.2434 (16)	1.86	0.355	Cu4-S4 ⁱⁱ	2.2474 (15)	1.86	0.351
	valence	•	1.067	67 valence		1.065	
Symmetry codes: (i) <i>x</i> , <i>y</i> , <i>-z</i> +1; (ii) <i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1; (iii) <i>-x</i> +1, <i>-y</i> +1, <i>z</i>							

Table S2 The selected bond lengths (Å) for Cu_{12}

Table S3 The selected bond angles for Cu_{12}

Band	Angles [°]	Band	Angles [°]
O2-Cu1-O1	104.15 (15)	Cu3 ⁱⁱⁱ -S5-Cu3 ⁱⁱ	101.67 (8)
O2-Cu1-S4	118.57 (11)	C1-O1-Cu1	116.9 (3)
O1-Cu1-S4	106.45 (11)	C7-O2-Cu1	116.6 (3)
O2-Cu1-S1	87.60 (11)	C7-O2-Cu2	117.0 (3)
O1-Cu1-S1	84.77 (10)	Cu1-O2-Cu2	125.55 (17)
S4-Cu1-S1	146.45 (6)	C25-N1-Cu3	124.3 (4)
O2 ⁱ -Cu2-O2	96.1 (2)	C21-N1-Cu3	117.7 (4)
O2 ⁱ -Cu2-S5	112.47 (11)	C26-N2-C30	117.0 (7)
O2-Cu2-S5	112.47 (11)	C26-N2-Cu4	118.8 (5)
O2 ⁱ -Cu2-S2	86.84 (10)	C30-N2-Cu4	124.2 (6)

O2-Cu2-S2	86.84 (10)	C12 ⁱ -S2-Cu2	95.20 (17)
S5-Cu2-S2	149.87 (8)	C21-S4-Cu1	111.48 (18)
N1-Cu3-S5 ⁱⁱ	123.66 (15)	C21-S4-Cu3 ⁱⁱⁱ	108.46 (18)
N1-Cu3-S4 ⁱⁱⁱ	120.59 (15)	Cu1-S4-Cu3 ⁱⁱⁱ	102.18 (6)
S5 ⁱⁱ -Cu3-S4 ⁱⁱⁱ	113.66 (6)	C21-S4-Cu4 ⁱⁱ	108.19 (18)
N1-Cu3-Cu3 ⁱⁱⁱ	86.32 (13)	Cu1-S4-Cu4 ⁱⁱ	122.82 (7)
S5 ⁱⁱ -Cu3-Cu3 ⁱⁱⁱ	127.95 (4)	Cu3 ⁱⁱⁱ -S4-Cu4 ⁱⁱ	102.36 (6)
S4 ⁱⁱⁱ -Cu3-Cu3 ⁱⁱⁱ	69.24 (4)	C26-S5-Cu2	116.6 (3)
N1-Cu3-Cu4 ⁱⁱ	87.60 (13)	C26-S5-Cu3 ⁱⁱⁱ	108.52 (16)
S5 ⁱⁱ -Cu3-Cu4 ⁱⁱ	69.23 (5)	Cu2-S5-Cu3 ⁱⁱⁱ	110.25 (6)
S4 ⁱⁱⁱ -Cu3-Cu4 ⁱⁱ	128.59 (5)	C26-S5-Cu3 ⁱⁱ	108.52 (16)
Cu3 ⁱⁱⁱ -Cu3-Cu4 ⁱⁱ	71.15 (3)	Cu2-S5-Cu3 ⁱⁱ	110.25 (6)
N2-Cu4-S4 ⁱⁱⁱ	122.62 (5)	S4 ⁱⁱⁱ -Cu4-Cu3 ⁱⁱⁱ	68.55 (4)
N2-Cu4-S4 ⁱⁱ	122.62 (5)	S4 ⁱⁱ -Cu4-Cu3 ⁱⁱⁱ	126.50 (6)
S4 ⁱⁱⁱ -Cu4-S4 ⁱⁱ	113.49 (8)	Cu3 ⁱⁱ -Cu4-Cu3 ⁱⁱⁱ	70.10 (4)
N2-Cu4-Cu3 ⁱⁱ	86.58 (14)	C12-S2-Cu2	95.20 (17)
S4 ⁱⁱⁱ -Cu4-Cu3 ⁱⁱ	126.50 (6)	C8-S1-Cu1	93.36 (17)
S4 ⁱⁱ -Cu4-Cu3 ⁱⁱ	68.55 (4)	C6-S1-Cu1	95.80 (17)
N2-Cu4-Cu3 ⁱⁱⁱ	86.58 (14)	C6-S1-Cu1	95.80 (17)

Symmetry codes: (i) *x*, *y*, *-z*+1; (ii) *-x*+1, *-y*+1, *-z*+1; (iii) *-x*+1, *-y*+1, *z*.

Table S4 Some recent reports on Cu-based coordination compounds/representative composites for photothermal conversion

Compounds	Light source	Sample status	Heating rate	Maximum temperature	Stability	Reference	
		solid	9.5 °C/s in the first 5 s	124.5 °C	recyclable		
$ Cu_{12} $	30 mg/mL in H ₂ O	$\begin{array}{c} 3.7 \text{ °C/min} \\ 1.0 \text{ °C/min} (H_2O) \\ \text{in the first 10 min} \end{array}$	59.3 °C 33.8 °C (H ₂ O)	-	This work		
			30 mg/mL in DMF	4.8 °C/min 2.3 °C/min (DMF) in the first 10 min	67.9 °C 45.1 °C (DMF)	-	
Cu ^I ₄ Cu ^{II}	Xenon lamp	colid	1.49 °C/min in the first 10 min	46.3 °C	-	Inorg. Chim. Acta, 2023, 545 121270	
Cu ^I ₆ Cu ^{II} ₃	300 W	sond	1.95 °C/min in the first 10 min	49.6 °C	-		
Cu ^{II} ₆ Cu ^I ₃	Simulated sunlight 0.1 W/cm ²	solid	4.48 °C/min in the first 10 min	78.2 °C	-	Inorg. Chem., 2023, 62,401–407	
Cu ^I ₄ Cu ^{II} -Ia	xenon lamp 300 W		3.85 °C/min in the first 10 min	60 °C	-		
Cu ^I ₄ Cu ^{II} -Ib					-		
Cu ^I ₄ Cu ^{II} -Ic			2.71 °C/min in the first 10 min	49.0 °C	-		
Cu ^I ₄ Cu ^{II} -Id			3.85 °C/min	60 °C	-	Dalton Trans., 2022, 51 , 6053	
Cu ^I 4Cu ^{II} -IIa		300 W in the first 10 m	in the first 10 min		-		
Cu ^I ₄ Cu ^{II} -IIb			4.63 °C/min in the first 10 min	69.8 °C	-		
Cu ^I ₄ Cu ^{II} -IIc		3.8 in the	3.85 °C/min	60 00	-		
Cu ^I ₄ Cu ^{II} -IId			in the first 10 min	00 - C	-		

Cu ^{II} -1	Xenon lamp 300 mW	solid	1.8 °C/min from the beginning	28 °C	-	Inorg. Chim. Acta, 2021, 526 , 120531
Cu ^{II} -2			1 °C/min from the beginning	27 °C	-	
Cu ^{II} -3			2 °C/min from the beginning	32 °C	-	
Cu ^{II} -1	Xenon lamp 300 mW		2 °C/min from the beginning	40 °C	-	Inorg. Chim. Acta, 2020, 508 , 119608
Cu ^{II} -2		solid	0.9 °C/min from the beginning	37 °C	-	
Cu ^{II} -3			1.5 °C/min from the beginning	36 °C	-	
SD/Ag ₁₈ a	808 nm laser 0.35 W/cm ²	solid	84.3 °C/s in the first 4 s	360 °C	destroyed	Angew. Chem. Int. Ed.,
	808 nm laser 5.0 W/cm2	300 µM in DMF	5.6 °C/min in the first 5 min.	51 °C	recyclable	2022, 61 , e202200823
Ag ₁₅₅	660 nm laser 0.1 W/cm ²	240 µM in DMF	7.82 °C/min in the first 5 min.	59.1 °C	recyclable	Angew. Chem. Int. Ed., 2022, 61 , e202206742
{Mo ₁₅₄ }@CDC	808 nm laser 1 W/cm ²	0.204 mM in H ₂ O	8.4 °C/min in the first 5 min.	67 °C	recyclable	Science Advances, 2021, 7, eabf8413
PMo ₁₀ V ₂ @TMB _{CT}	808 nm laser 1 W/cm ²	3.85 mg/mL)	7.0 °C/min in the first 4 min.	55 °C	recyclable	Chem. Eng. J. 2022 446, 137134
W-POM NCs	808 nm laser 2.0 W	$300 \text{ mM in H}_2\text{O}$	10 °C/min in the first 3 min.	55 °C	recyclable	ACS Nano 2020, 14 , 2126–2136
rPOMs@MSNs@copolymer	808 nm laser 1.8 W/cm ²	1.0 mg/mL in H ₂ O	1.85 °C/min in the first 10 min	43.5 °C	-	<i>Adv. Healthcare Mater.</i> 2018, 7, 1800320
W ₁₈ O ₄₉	980 nm laser 0.72 W/cm ²	3.0 mg/mL in H ₂ O	8.24 °C/min in the first 5 min.	61.2 °C	-	Adv. Mater. 2013, 25, 2095–2100