A new 0D-2D CsPbBr₃-Co₃O₄ heterostructure photocatalyst with efficient charge separation for photocatalytic CO₂ reduction

Xin Zhong,^{a†} Xinmeng Liang,^{a†} Xinyu Lin,^a Jin Wang,^{*a,b} Malik Zeeshan Shahid,^{*a} and Zhengquan Li,^{*a,b}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

^bZhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

[#] The authors contributed equally.

Corresponding Author

- * E-mail: wangjin@zjnu.edu.cn
- * E-mail: zeeshan-nano@zjnu.edu.cn
- * E-mail: zqli@zjnu.edu.cn

TABLE OF CONTENTS

1.	EXPERIMENTAL SECTION	3
1	1.1 Materials	3
1	1.2 Characterization	3
1	1.3 Photocatalytic activity measurement	4
1	1.4 Photoelectrochemical measurements	4
1	1.5 Energy bandgap calculations	4
2.	SUPPLEMENTARY FIGURES S1-13	6
3.	SUPPLEMENTARY TABLES S1-3	18
4.	REFERENCES	21

1. EXPERIMENTAL SECTION

1.1 Materials

All chemicals were purchased and used without further purification. Lead bromide PbBr₂ (99.999%), Cs₂CO₃ (99.995%), oleic acid (OA, C₁₈H₃₄O₂, 90%), and octadecene (ODE, C₁₈H₃₆, 99.8%), were purchased from Sigma-Aldrich. Hexane (95%), cyclohexamethylenetetramine (Urotropine, 99.5%, C₆H₁₂N₄), ethanol, and ethyl acetate (EA, 99.8%) were purchased from Aladdin company. Chloride hexahydrate (99%, CoCl₂.6H₂O) was purchased from Sinopharm chemical reagent. The water used for the experiments was purified by a Millipore Milli-Q system.

1.2 Characterization

Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were measured by employing a JEOL JEM-2100F field-emission high-resolution transmission electron microscope operated at 200 kV. The samples were prepared by using EA solution, and a piece of the carbon-coated copper grid was used on which a drop of suspension (of each sample) was precisely placed. The copper grid was dried under ambient conditions and further used for morphological characterization. Zeta sizer Nano-ZS (Malvern Instruments, U.K.) was used to collect Zeta (ζ)-potential data, for which the samples were prepared by dispersing in EA solutions. Philips X'Pert Pro Super X-ray diffractometer with Cu-K α radiation (λ =1.5418Å) was used to record Powder XRD patterns. Shimadzu 2501PC UV-vis spectrophotometer was employed to investigate the UV-vis absorption spectra. FluoroMax-4 spectrofluorometer (HoribaScientific) and analyzed with an Origin-integrated software (FluoroEssencev2.2) was used to measure the steady-state photoluminescence (PL) spectra. The PL decay spectra were recorded on a photoluminescence spectrometer (FLS980, Edinburgh Instruments Ltd.) with a 380-nm excitation wavelength and a 515-nm emission wavelength with the time-correlated singlephoton counting (TCSPC) mode. The lifetime data were analyzed with DataStation v6.6 (Horiba Scientific). ESCALab 250 X-ray photoelectron spectrometer with Al-Kα radiation was used to record X-ray photoelectron spectra (XPS) data in which the calibration was done with C 1s peak at 284.6 eV.

1.3 Photocatalytic activity measurement

In a typical experiment, the as-prepared photocatalysts (5 mg) were first added to a Pyrex photoreactor without using any sacrificial agent. Next, 50 μ L of water was added. Then, a rubber septum was used to seal the photoreactor, and then it was vacuumed and subsequently purged with CO₂ for 10~20 min in the dark. The photoreactor was then placed in a water bath maintained at 25 °C, stirred, and irradiated by a 300-W Xe lamp with a 400 nm cutoff filter (Solaredge 700, 100 mW·cm⁻²). The product distribution was quantified through periodic headspace gas analysis (500 μ L) by gas chromatography (GC, 7820A, Ar carrier, Agilent). Produced CH₄ was measured by a flame ionization detector (FID), and CO was converted to CH₄ by a methanation reactor and then analyzed by the FID. The isotope-labelled experiments were performed using ¹³CO₂ instead of ¹²CO₂, and the products were analyzed using gas chromatography-mass spectrometry (GC-MS, 7890A and 5975C, Agilent). The products were separated with GC in advance and reached the MS at different retention times.

1.4 Photoelectrochemical measurements

The Photoelectrochemical measurements were carried out using a three-electrode cell CHI 760E electrochemical station (Shanghai Chenhua, China) with a Pt foil counter electrode and a saturated Ag/AgCl reference electrode. The working electrode was prepared by the dipcoating method. About 1 mg of the photocatalyst was dispersed in 1 mL of hexane and 10 μ L Nafion solution to form a slurry. Next, 30 μ L of the slurry was dip-coated on the FTO conductive glass with an exposure area of 0.196 cm². Subsequently, the film was dried in a vacuum oven at 80 °C. Then acetonitrile solution with 0.1 mol/L of tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the electrolyte. The variation of photoinduced current density versus time (I-t curve) was recorded at a 0 V bias potential under visible light switching on and off mode, $\lambda > 400$ nm, 300 W Xe lamp (Solaredge 700). The electrochemical impedance spectroscopy (EIS) results were obtained at the open circuit potential using a frequency ranging from 10⁴ Hz to 10⁻¹ Hz.

1.5 Energy bandgap calculations

In relational expression proposed by Tauc, Devis, and Mott i.e., $\alpha hv = A (hv - E_g)^n$ symbols are denoted as follows; h: plank constant, v: frequency of vibration, α : absorption coefficient, E_g : band gap, and A: proportional constant. As both constituents i.e., CsPbBr₃ QDs and Co₃O₄ HPs

in heterostructure are direct allowed transition, the calculation of energy bandgap value was based on n=1/2.

2. SUPPLEMENTARY FIGURES S1-13

Fig. S1 Schematic illustration for the synthesis of CsPbBr₃ QDs via hot-injection method.

Fig. S2 Schematic illustration for the synthesis of Co₃O₄ HPs by calcination route.

Fig. S3 Illustration for the synthesis OD/2D CsPbBr₃-Co₃O₄ heterostructure at ambient conditions, indicating stepwise processes and their real-time photographs.

The desired quantity of Co₃O₄ HPs was taken (Fig. S3a) and dissolved in absolute ethanol via sonication for 3 minutes (Fig. S3b) to get suspension 1. On the other hand, the required amount of CsPbBr₃ QDs was taken from stock (Fig. S3d), centrifuged (Fig. S3e), and dispersed in ethyl acetate via stirring and sonication for 2 minutes to obtain the suspension 2 (Fig. S3f). This suspension 2 was then placed in the Teflon linen vessel for the subsequent procedure to occur in the dark (Fig. 1c). Next, suspension 1 was swiftly inserted into suspension 2 under vigorous stirring (Fig. 1c), and later on, covered with another Teflon linen vessel directed upside down to achieve a dark environment. The stirring continued for 30 minutes in dark and another 30 minutes in ambient conditions and finally, after washing and drying, the CsPbBr₃-Co₃O₄ heterostructure was obtained(Fig. S3g).

Fig. S4 Zeta potential of pristine Co_3O_4 HPs and $CsPbBr_3$ QDs in the solution of ethyl acetate. The values endorsing the successful coulomb electrostatic interaction between these components to form the Co_3O_4 -CsPbBr₃ heterojunction.

Fig. S5 Color transformations of as-prepared samples (a) without UV light irradiation and (b) under UV light illumination.

Fig. S6 Comparative depiction of catalytic activity during 6 hours in terms of produced gas CO and CH_4 by using as-synthesized $CsPbBr_3$ QDs, Co_3O_4 HPs, and $CsPbBr_3$ - Co_3O_4 heterostructure.

Fig. S7 Influence of various mass ratios in the $CsPbBr_3-Co_3O_4$ heterostructure over the production of CO and CH_4 .

Fig. S8 Mass spectra showing (a) ${}^{13}CH_4$ (m/z = 17) and (b) ${}^{13}CO$ (m/z = 29) generated over CsPbBr₃-Co₃O₄ in the photocatalytic ${}^{13}CO_2$ reduction.

Fig. S9 The results confirm the oxidation of water to oxygen during the photocatalytic reduction of CO_2 .

Fig. S10 TEM image and XRD pattern of $CsPbBr_3-Co_3O_4$ after 5 consecutive cycles, displaying the stability of both morphology and crystallinity, beneficial for practical applications.

Fig. S11 Nitrogen adsorption-desorption curves for (e) pristine Co_3O_4 HPs and (f) Co_3O_4 HPs decorated with CsPbBr₃-QDs, and their corresponding Brunauer-Emmett-Teller BET surface area values are mentioned in Table S1.

Fig. S12 Control experiments showing steady-state photoluminescence spectra of Co_3O_4 HPs.

Under an excitation wavelength at about 630 nm, a weak PL signal was obtained. The peak at 670 nm was probably ascribed to deep-level emission in Co_3O_4 . Note that the as-prepared Co_3O_4 sample did not display the signals for TRPL.

3. SUPPLEMENTARY TABLES S1-3

Table S1. The photocatalytic activity of various state-of-the-art photocatalysts in comparisonwith as-prepared $CsPbBr_3-Co_3O_4$ heterostructure

Entry#	Photocatalyst	СО	CH₄	*R _{electron}	Reference	
		μmol g ⁻¹ h ⁻¹				
1	CsPbBr ₃ -Co ₃ O ₄	35.40	29.2	304.4	This work	
2	CsPbBr₃ QDs	14.23	0.39	31.98	This work	
4	CsPbBr ₃ -BiOBr	2.5	26.1	213.8	[1]	
5	BiVO ₄ /CsPbBr ₃	17	6	82	[2]	
6	Mn-CsPbBr ₃	7.5	0.58	19.64	[3]	
7	ZnSe-CsSnCl ₃	57	2	128.32	[4]	
8	CsPbBr ₃ /CTF-1	48.2	0	96.4	[5]	
9	0D CsPbBr ₃ /2D CsPb ₂ Br ₅	197.11	1.5	406.22	[6]	
10	CsPbBr ₃ /Bi ₂ WO ₆	50.3	1	108.6	[7]	
11	CsPbBr ₃ /Bi ₂ WO ₆	9.3	14.3	133	[8]	
12	CsPbBr ₃ /UiO-66(NH ₂)	8.21	0.26	18.5	[9]	
13	CsPbBr ₃ QDs	4.125	1.90	23.72	[10]	
14	CsPbBr ₃ /GO	4.81	2.46	29.32	[10]	
15	Co ₃ O ₄ (OVs)	51.7	0	103.4	[11]	
16	Co ₃ O ₄ /Al ₂ O ₃	48.4	0	96.8	[12]	
17	Hollow Co ₃ O ₄ Dodecahedron	46.3	0	92.6	[13]	
18	Co ₃ O ₄ nanoparticles	0.73	10	81.48	[14]	
*Formula used to calculate the rate of electron consumed: $R_{electron} = 2R_{CO} + 8R_{CH_4}$ Where R_{CO} is the rate of CO evolution, and R_{CH_4} is the rate of CH ₄ evolution						

Table S2. The information of nitrogen adsorption-desorption analysis in terms of BET surface area, average pore size, and total pore volume of as-synthesized Co_3O_4 -HPs and CsPbBr₃-Co₃O₄.

Samples	BET surface area	average pore size	total pore volume	
	(m²/g)	(nm)	(cm³/g)	
Co ₃ O ₄ HPs	16.902	31.35	0.1325	
CsPbBr ₃ -Co ₃ O ₄	5.016	21.21	0.0266	

Table S3. PL decay parameters of the CsPbBr $_3$ QDs in comparison with CsPbBr $_3$ -Co $_3O_4$ heterostructure.

Sample	τ1	A ₁	τ ₂	A ₂	τ ₃	A ₃	τ _{avg}
CsPbBr ₃ -QDs	2.61	72.9%	14.71	23.7%	104.36	3.4%	47.43
CsPbBr ₃ -Co ₃ O ₄	3.38	7.5%	18.21	84.2%	103.52	8.3%	45.04
*Determined using the fitting function $y = B + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$							

4. REFERENCES

- Z. Zhang, L. Li, Y. Jiang and J. Xu, Step-scheme photocatalyst of CsPbBr₃ quantum Dots/BiOBr nanosheets for efficient CO₂ photoreduction, *Inorg.chem.*, 2022, **61**, 3351-3360.
- 2 X. Y. Yue, L. Cheng, J. J. Fan and Q. J. Xiang, 2D/2D BiVO₄/CsPbBr₃ S-scheme heterojunction for photocatalytic CO₂ reduction: Insights into structure regulation and Fermi level modulation, *Appl. Catal. Environ.*, 2022, **304**, 120979.
- C. C. Lin, T. R. Liu, S. R. Lin, K. M. Boopathi, C. H. Chiang, W. Y. Tzeng, W. C. Chien, H. S. Hsu, C. W. Luo, H. Y. Tsai, H. A. Chen, P. C. Kuo, J. Shiue, J. W. Chiou, W. F. Pong, C. C. Chen and C. W. Chen, Spin-polarized photocatalytic CO₂ reduction of Mn-doped perovskite nanoplates, *J. Am. Chem. Soc.*, 2022, **144**, 15718-15726.
- 4 N. Li, X. Chen, J. Wang, X. Liang, L. Ma, X. Jing, D. L. Chen and Z. Li, ZnSe Nanorods-CsSnCl₃ perovskite heterojunction composite for photocatalytic CO₂ reduction, *ACS nano*, 2022, **16**, 3332-3340.
- 5 Q. Wang, J. Wang, J. C. Wang, X. Hu, Y. Bai, X. Zhong and Z. Li, Coupling CsPbBr₃ quantum dots with covalent triazine frameworks for visible-light-driven CO₂ reduction, *ChemSusChem*, 2021, **14**, 1131-1139.
- 6 L. Ding, B. Borjigin, Y. Li, X. Yang, X. Wang and H. Li, Assembling an affinal OD CsPbBr₃/2D CsPb₂Br₅ architecture by synchronously in situ growing CsPbBr₃ QDs and CsPb₂Br₅ nanosheets: enhanced activity and reusability for photocatalytic CO₂ reduction, *ACS applied mater. interfaces*, 2021, **13**, 51161-51173.
- J. Wang, J. Wang, N. Li, X. Du, J. Ma, C. He and Z. Li, Direct Z-scheme 0D/2D heterojunction of CsPbBr₃ quantum Dots/Bi₂WO₆ nanosheets for efficient photocatalytic CO₂ reduction, *ACS Appl. Mater. Interfaces*, 2020, **12**, 31477-31485.
- Y. Jiang, H. Y. Chen, J. Y. Li, J. F. Liao, H. H. Zhang, X. D. Wang and D. B. Kuang, Z-Scheme 2D/2D heterojunction of CsPbBr₃/Bi₂WO₆ for improved photocatalytic CO₂ reduction, *Adv. Func. Mater.*, 2020, **30**, 2004293.
- 9 S. Wan, M. Ou, Q. Zhong and X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66(NH₂) nano junction as efficient visible-light-driven photocatalyst for CO₂ reduction, *Chem. Eng. J.*, 2019, **358**, 1287-1295.
- 10 Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang and C. Y. Su, A CsPbBr₃ perovskite quantum dot/graphene oxide composite for photocatalytic CO₂ reduction, *J. Am. Chem. Soc.*, 2017, **139**, 5660-5663.
- 11 Q. Zhang, P. Yang, H. Zhang, J. Zhao, H. Shi, Y. Huang and H. Yang, Oxygen vacancies in Co₃O₄ promote CO₂ photoreduction, *Appl. Catal. Environ.*, 2022, **300**, 120729.
- 12 P. Yang, Q. Zhang, Z. Yi, J. Wang and H. Yang, Rational electronic control of carbon dioxide reduction over cobalt oxide, *J. Catalysis*, 2020, **387**, 119-128.
- 13 L. Wang, J. Wan, Y. Zhao, N. Yang and D. Wang, Hollow multi-shelled structures of Co₃O₄ dodecahedron with unique crystal orientation for enhanced photocatalytic CO₂ reduction, *J. Am. Chem. Soc.*, 2019, **141**, 2238-2241.
- 14 J. Y. Choi, C. K. Lim, B. Park, M. Kim, A. Jamal and H. Song, Surface activation of cobalt oxide nanoparticles for photocatalytic carbon dioxide reduction to methane, *J. Mater. Chem.*, 2019, **7**, 15068-15072.