Lanthanide doped lead-free double perovskite La₂MgTiO₆ as ultra-bright multicolour LEDs and novel selfcalibration partition optical thermometer Keming Zhu^a, Hanyu Xu^a, Zhiying Wang^a, Zuoling Fu^a*

^aCoherent Light and Atomic and Molecular Spectroscopy Laboratory,

Key Laboratory of physics and Technology for Advanced Batteries,

College of Physics, Jilin University, Changchun 130012, China.

*Corresponding author.

E-mail address: zlfu@jlu.edu.cn (Z. L. Fu)

Fig. S1 XRD patterns of (a-b) Tm-Yb; (c-d) Er-Yb; (e-f) Ho-Yb; (g) Ho/Er/Tm-Yb

doped LMTO phosphors.

Fig. S2 EDS spectrum of LMTO: 0.2%Tm³⁺, 0.05%Er³⁺, 7%Yb³⁺ phosphor.

Fig. S3 (a) FE-SEM image and (b-g) elemental mapping images of the LMTO: 0.2%Tm³⁺, 7%Yb³⁺ phosphor. (h) EDS spectrum of LMTO: 0.2%Tm³⁺, 7%Yb³⁺ phosphor.

Fig. S4 (a) FE-SEM image and (b-g) elemental mapping images of the LMTO: 4%Er³⁺, 5%Yb³⁺ phosphor. (h) EDS spectrum of LMTO: 4%Er³⁺, 5%Yb³⁺ phosphor.

Fig. S5 (a) FE-SEM image and (b-g) elemental mapping images of the LMTO: 1%Ho³⁺, 5%Yb³⁺ phosphor. (h) EDS spectrum of LMTO: 1%Ho³⁺, 5%Yb³⁺ phosphor.

Fig. S6 UC emission spectra of LMTO: x%Tm³⁺, 5Yb³⁺ phosphors. Inset: Emission intensity as a function of the Yb³⁺ contents. λ_{ex} = 980 nm.

Fig. S7 UC emission spectra of LMTO: $x\%Er^{3+}$, $5Yb^{3+}$ phosphors. Inset: Emission intensity as a function of the Yb³⁺ contents. λ_{ex} = 980 nm.

Fig. S8 XRD pattern of LMTO:4%Er³⁺, 6%Yb³⁺ phosphor.

Fig. S9 UC emission spectra of LMTO: x%Ho³⁺, 5%Yb³⁺ phosphors. Inset: Emission intensity as a function of the Yb³⁺ contents. λ_{ex} = 980 nm.

Fig. S10 Raman spectrum of the LMTO host.

Fig. S11 FT-IR spectrum of the LMTO host.

Fig. S12 CIE chromatic coordinates of LMTO:0.2%Tm³⁺, 7%Yb³⁺, LMTO:4%Er³⁺, 5%Yb³⁺ and LMTO:0.2%Tm³⁺, 0.05Er³⁺, 7%Yb³⁺ phosphors.

Table S1. The color purity of LMTO: $1\%Ho^{3+}$, $5\%Yb^{3+}$, LMTO: $4\%Er^{3+}$, $5\%Yb^{3+}$ andLMTO: $0.2\%Tm^{3+}$, $7\%Yb^{3+}$ phosphors.

Compound	(x, y)	$(\mathbf{x}_i, \mathbf{y}_i)$	$(\mathbf{x}_d, \mathbf{y}_d)$	Color purity (%)	
LMTO: 1%Ho ³⁺ ,5%Yb ³⁺	(0.276,0.713)		(0.264,0.725)	91.8%	
LMTO: 4%Er ³⁺ ,5%Yb ³⁺	(0.314,0.675)	(0.3101,0.3162)	(0.288,0.700)	93.4%	
LMTO:0.2%Tm ³⁺ ,7%Yb ³⁺	(0.118,0.139)		(0.095,0.131)	92.2%	

Fig. S13 The curve of red-green ratio varying with temperature.

Fig. S14 The PL emission intensity of La_2MgTiO_6 : 0.2%Tm³⁺, 0.05%Er³⁺, 7%Yb³⁺ phosphor versus various temperatures.

Compounds	Transitions	Range (K)	S _a (% K ⁻¹)	S _r (% K ⁻¹)	Refs
$\begin{tabular}{ c c c c c } \hline Na_2 YMg_2 (VO_4)_3: \\ Er^{3+}/Yb^{3+} \end{tabular}$	${}^{2}\text{H}_{11/2}, {}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$	303-573	0.77	1.104	1
$Ba_2SrLu_4O_9{:}Er^{3+}\!/Yb^{3+}$	${}^{2}\text{H}_{11/2}, {}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$	303-573	0.46	0.99	2
Na ₃ Gd (VO ₄) ₂ : Er ³⁺ /Yb ³⁺	${}^{2}H_{11/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	291-578	0.48	0.83	3
$La_{2}Ti_{2}O_{7}:$ Ho ³⁺ /Yb ³⁺	${}^5F_5/{}^5F_4, {}^5S_2 {\longrightarrow} {}^5I_8$	293-473	0.32	1.41	4
TeO ₂ -ZnO-BaO: Ho ³⁺ /Yb ³⁺	${}^5\mathrm{F}_{5}\!/{}^5\mathrm{F}_{4,}{}^5\mathrm{S}_2\!\!\rightarrow\!\!{}^5\mathrm{I}_8$	303-503	0.49	0.41	5
NaLuF ₄ : Ho ³⁺ /Yb ³⁺	${}^{5}F_{1}, {}^{5}G_{6}/{}^{5}F_{2,3}, {}^{3}K_{8} \rightarrow {}^{5}I_{8}$	390-780	0.14	0.83	6
YOF: Tm ³⁺ /Yb ³⁺	${}^{3}\mathrm{H}_{4(2)}, {}^{3}\mathrm{H}_{4(2)} \rightarrow {}^{3}\mathrm{H}_{6}$	190-300	0.27	0.1207	7
Sr_2GdF_7 : Tm^{3+}/Yb^{3+}	${}^3F_3 \rightarrow {}^3H_6/{}^1G_4 \rightarrow {}^3F_4$	293-563	3.9	1.97	8
Bi ₂ SiO ₅ :Tm ³⁺ , Yb ³⁺ @SiO ₂	$^1\mathrm{G}_4 \rightarrow {}^3\mathrm{F}_4 / {}^3\mathrm{F}_{2,3} \rightarrow {}^3\mathrm{H}_6$	280-400	1.68	1.95	9
LMTO:0.2%Tm ³	LIR 1 _{Tm}		4.94	1.92	
+, 7%Yb ³⁺	LIR 2 _{Tm}		3.32	1.63	
LMTO:4%Er ³⁺ , 5%Yb ³⁺	LIR 3 _{Er}	313-573	0.68	1.13	T1 ·
LMTO:1%Ho ³⁺ , 5%Yb ³⁺	LIR 4 _{Ho}		0.18	0.58	work
LMTO:0.2%Tm ³⁺ , 0.05%Er ³⁺ , 7%Yb ³⁺	LIR 2 _{Tm}		0.81	1.36	
	LIR 3 _{Er}		1.47	1.09	
	LIR 5 _{Er+Tm}		1.06	1.21	

Table S2. Sensing sensitivities of Ln^{3+} -activated luminescent thermometers.

Fig. S15 Temperature uncertainty δT of Mode I-IV.

Compounds	LIR	δT_{min}	Repeatability (R)
$I MTO(0.20/Tm^{3+}.70/Vh^{3+})$	LIR 1 _{Tm}	0.53	96.1%
LIVITO.0.27011115, 770105	LIR 2 _{Tm}	1.02	91.4%
LMTO:4%Er ³⁺ , 5%Yb ³⁺	LIR 3 _{Er}	3.73	98.5%
LMTO:1%Ho ³⁺ , 5%Yb ³⁺	LIR 4 _{Ho}	2.12	92.1%
	LIR 2 _{Tm}	1.3	95.6%
$LM10:0.2\%1 \text{m}^{-3}$, 0.059/Er3+.79/Vb3+	LIR 3 _{Er}	2.7	96.3%
0.0370E^{13} , $770 \text{Y} \text{D}^{37}$	LIR 5 _{Er+Tm}	0.73	97%

Table S3. The δT_{min} and Repeatability (R) values of four temperature measurement modes.

References

- 1. Y. Tong, W. Zhang, R. Wei, L. Chen, H. Guo, Na₂YMg₂(VO₄)₃:Er³⁺,Yb³⁺ phosphors: Up-conversion and optical thermometry, *Ceram. Int.*, 2021, **47**, 2600-2606.
- J. Hu, X. Zhang, H. Zheng, F. Lu, X. Peng, R. Wei, F. Hu, H. Guo, Improved photoluminescence and multimode optical thermometry of Er³⁺/Yb³⁺ co-doped (Ba,Sr)₃Lu₄O₉ phosphors, *Ceram. Int.*, 2022, **48**, 3051-3058.
- K. Saidi, M. Dammak, K. Soler-Carracedo, I.R. Martín, Optical thermometry based on upconversion emissions in Na₃Gd (VO₄)₂: Yb³⁺-Er³⁺/Ho³⁺ micro crystals, *J. Alloys Compd.*, 2022, **891**, 161993.
- Y. Zhao, Z. Su, Y. Huang, Y. Liu, S. Xu, G. Bai, Dual-functional lanthanide ions doped lanthanum titanate microcrystals for simultaneous temperature detection and photothermal conversion, *J. Lumin.*, 2021, 239, 118335.
- A. Doğan, M. Erdem, K. Esmer, G. Eryürek, Upconversion luminescence and temperature sensing characteristics of Ho³⁺/Yb³⁺ co-doped tellurite glasses, *J. Non-Cryst. Solids*, 2021, 571, 121055.
- S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, M. Yin, Optical thermometry based on upconversion luminescence in Yb³⁺/Ho³⁺ co-doped NaLuF₄, *J. Alloys Compd.*, 2014, **588**, 654-657.
- H. Lu, J. Yang, D. Huang, Q. Zou, M. Yang, X. Zhang, Y. Wang, H. Zhu, Ultranarrow NIR bandwidth and temperature sensing of YOF:Yb³⁺/Tm³⁺ phosphor in low temperature range, *J. Lumin.*, 2019, **206**, 613-617.
- W. Chen, J. Cao, F. Hu, R. Wei, L. Chen, H. Guo, Sr₂GdF₇:Tm³⁺/Yb³⁺ glass ceramic: A highly sensitive optical thermometer based on FIR technique, *J. Alloys Compd.*, 2018, **735**, 2544-2550.
- E. Casagrande, M. Back, D. Cristofori, J. Ueda, S. Tanabe, S. Palazzolo, F. Rizzolio, V. Canzonieri, E. Trave,
 P. Riello, Upconversion-mediated Boltzmann thermometry in double-layered Bi₂SiO₅:Yb³⁺, Tm³⁺@SiO₂ hollow nanoparticles, *J. Mater. Chem. C*, 2020, **8**, 7828-7836.