Oxygen vacancies confined in hierarchically porous CsPbBr₃@Pb-MOF through in situ structural transformation for promoted photocatalytic CO₂ reduction

Yangwen Hou^a, Man Dong^c, Jingting He^a, Jing Sun^b, Chunyi Sun^{c,*}, Xiao Li^b, Xinlong Wang^c, Zhongmin Su^{b,d,*}

^aSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

^bJilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China

^cKey Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China

^dState Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China

* Corresponding author.

E-mail addresses: suncy009@nenu.edu.cn (C. Sun), zmsu@nenu.edu.cn (Z. Su).

Fig.S1. SEM image and EDX mapping of PbBr-MOF

Fig. S2. Crystallographic view of (a) a single net of PbBr-MOF, (b) Coordination environment of the Pb(II) atom, (c) single $[Pb_2Br_3]^+$.

Fig. S3. Photographs of (a) PbBr-MOF and Pb-MOF, (b) PbBr-MOF and CsPbBr₃@Pb-MOF under daylight and UV light (365 nm).

Fig. S7. SEM image and EDX mapping of Pb-MOF.

Fig. S8. PXRD patterns of (a)PbBr-MOF and (b) Pb-MOF after water immersion.

Fig. S9. Water contact angles of Pb-MOF.

Fig. S10. PXRD pattern of Pb-MOF and general Pb-MOF.

Fig. S11. (a) TEM image and particle size distributions of CsPbBr₃.

Fig. S12. Pore size distributions based on density-functional theory (DFT) analysis of Pb-MOF and general Pb-MOF.

Fig. S13. Pore size distributions based on density-functional theory (DFT) analysis of Pb-MOF and CsPbBr₃@Pb-MOF-2.

Fig. S14. TEM image of (a) Pb-MOF and (b) general Pb-MOF.

Fig. S15. Schematic showing the conversion of microporous MOFs into corresponding hierarchically porous structures based on the structural transformation.

28 days 35 days 42 days 49 days Fig. S16. Photographs of CsPbBr₃@Pb-MOF-2 in water under 365 nm UV light.

Fig. S17. Water contact angles of CsPbBr₃@Pb-MOF-2.

Fig. S18 PXRD pattern of CsPbBr₃@Pb-MOF-2 (a) after 49 days immersion in water and (b) after 30 min of treatment at 120 $^\circ\!C.$

Fig. S19 (a) PXRD pattern of CsPbBr₃@Pb-MOF-WOV. (b) Electron paramagnetic resonance spectra of CsPbBr₃@Pb-MOF-WOV.

Fig. S20. Schematic of experimental set-up for photocatalytic CO_2 reduction with the assistance of H_2O .

Fig. S21. The proposed photocatalytic reaction mechanism on the CsPbBr₃@Pb-MOF system for high selective.

Fig.S22 Mass spectra of photocatalytic products generated in the atmosphere of CO_2 and $H_2^{18}O$ on CsPbBr₃@Pb-MOF.

Fig.23 Schematic representation of the reduction of CO_2 to CO. where "*" represents the corresponding adsorption sites on the surface of the photocatalyst.

Fig.24 Schematic representation of the reduction of CO_2 to CO. where "*" represents the corresponding adsorption sites on the surface of the photocatalyst.

Fig. S25. PXRD pattern of CsPbBr₃@Pb-MOF-2 after 48h photocatalytic reduction CO₂ reaction cycles.

Fig. S26. TEM of CsPbBr₃@Pb-MOF-2 after 48h photocatalytic reduction CO₂ reaction cycles.

Fig. S27. XPS of CsPbBr₃@Pb-MOF-2 before and after 48h photocatalytic reduction CO_2 reaction cycles.

Fig. S28. UV-vis diffuse reflectance spectra of $CsPbBr_3@Pb-MOF-2$ before and after 48h photocatalytic reduction CO_2 reaction cycles.

Table S1. Time-resolved PL decay parameters of different samples under 365 nm excitation. The two-exponential decay curves were fitted using a non-linear least-squares method with a two-component decay law. The average lifetime (τ_{av}) was then determined using the equation:

Sample	τ ₁ (ns)	A ₁	τ₂(ns)	A ₂	X ²	τ _{av} (ns)
CsPbBr ₃	19.50 (23.8%)	15.59	81.57 (76.2%)	11.95	1.089	66.8
CsPbBr₃@Pb- MOF-2	3.82 (53.9%)	356.1	22.16 (46.1%)	52.46	1.019	12.3

$$\tau = \sum_{i=1}^{i=n} \mathbf{A}_i \tau_i^2 / \sum_{i=1}^{i=n} A_i \tau_i$$

Photocatalyst	CO (µmol g⁻ ¹)	H ₂ (μmol g ⁻¹)	Selectivity(%)
CsPbBr₃@Pb-MOF-1	352.3	n.d.	100
CsPbBr ₃ @Pb-MOF-2	1284	10.1	99.2
CsPbBr₃@Pb-MOF-3	1066	8.7	99.2
CsPbBr₃@Pb-MOF- WOV	221	22.7	90
CsPbBr₃	149	20.3	88
Pb-MOF	n.d.	n.d.	

Table S2. CO of selectivity of photocatalysts.

Reaction conditions: Photocatalyst (10 mg), reductant (H_2O , 100 μ L), CO_2 (1 atm), λ > 420 nm, 12 hours reaction time; n.d. = Not detectable; Selectivety= (n (CO))/(n (CO+H₂))*100%, where n (CO) was the amount of CO (mol g⁻¹).

Table S3. Summary of perovskite-based photocatalysts for CO₂ reduction in gas-solid phase and liquid-solid phase.

Photocatalyst	Products (μmol g ⁻¹ h ⁻¹)	Reaction agent	Light source	Ref
CsPbBr₃@Pb-MOF	CO (107)	H₂O	300W Xe-lamp (λ>420 nm)	This work
CsPbBr ₃ @ZIF-8	CO (0.505) CH ₄ (1.811)	H ₂ O	100W Xe-lamp (AM, 1.5G)	1
CsPbBr₃@ZIF-67	CO (0.767) CH ₄ (3.512)	H₂O	100W Xe-lamp (AM, 1.5G)	1
CsPbBr ₃ /MIL-100(Fe)	CO (20.4)	H ₂ O	300W Xe-lamp	2
CsPbBr ₃ NC/BZNW/MRGO	CO (0.58) CH ₄ (6.29)	H₂O	150W Xe-lamp (λ>420 nm)	3
a-Fe ₂ O ₃ /AmineRGO/CsPbBr ₃	CO (2.36) CH ₄ (9.45)	H ₂ O	150W Xe-lamp (AM, 1.5G)	4
CsPbBr ₃ /Pd-NS	CO (1.92) CH ₄ (3.47)	H ₂ O	150W Xe-lamp (λ>420 nm)	5
CsPbBr ₃ -Glycine	CO (27.7)	H₂O	300W Xe-lamp (λ>400 nm)	6
CsPbBr ₃ -GO-1.5	CH ₄ (18.6)	H ₂ O	500W Xe-lamp (λ>400 nm)	7
Pb-rich Ni: CsPbCl ₃	CO (169.37)	H₂O	300W Xe-lamp (AM, 1.5G)	8
CsPbBr ₃ QDs@UiO-66 (NH ₂)	CO (8.21) CH ₄ (0.26)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>420 nm)	9
MAPbl ₃ @PCN-221(Fe0.2)	CO (4.16) CH ₄ (13)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>400 nm)	10
MAPbl ₃ @PCN-221(Fe)	CO (14.16) CH ₄ (6.24)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>400 nm)	10
MF/CPB-NWs	CO (81)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>420 nm)	11
CsPbBr ₃ /BIF-122-Co	CO (0.005) CH ₄ (0.005)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>420 nm)	12
CPB@Cu-TCPP-20	CO (71.11) CH ₄ (0.82)	Acetonitrile	300W Xe-lamp (λ>420 nm)	13
CsPbBr ₃ @g-C ₃ N ₄ -NH ₂	CO (148.9)	H ₂ O /Ethyl acetate	300W Xe-lamp (λ>420 nm)	14

References

- [1] Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Core@shell CsPbBr₃@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO₂ reduction, ACS Energy Lett., 2018, **3**, 2656–2662.
- [2] R. Cheng, E. Debroye, J. Hofkens, M.B.J. Roeffaers, Efficient photocatalytic CO₂ reduction with MIL-100 (Fe)-CsPbBr₃ composites, *Catalysts*, 2020, **10**, 1352.
- [3] Y. Jiang, J.-F. Liao, Y.-F. Xu, H.-Y. Chen, X.-D. Wang, D.-B. Kuang, Hierarchical CsPbBr₃ nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO₂ reduction, J. Mater. Chem. A., 2019, 7, 13762–13769.
- [4] Y. Jiang, J.-F. Liao, H.-Y. Chen, H.-H. Zhang, J.-Y. Li, X.-D. Wang, D.-B. Kuang, All-solid-state Zscheme α-Fe₂O₃/Amine-RGO/CsPbBr₃ hybrids for visible-light-driven photocatalytic CO₂ reduction, *Chem*, 2020, **6**, 766–780.

- [5] Y.-F. Xu, M.-Z. Yang, H.-Y. Chen, J.-F. Liao, X.-D. Wang, D.-B. Kuang, Enhanced Solar-Driven Gaseous CO₂ Conversion by CsPbBr₃ Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst, ACS Appl. Energy Mater., 2018, 1, 5083–5089.
- [6] Y. Xu, W. Zhang, K. Su, Y.-X. Feng, Y.-F. Mu, M. Zhang, T.-B. Lu, Glycine-functionalized CsPbBr₃ nanocrystals for efficient visible-light photocatalysis of CO₂ reduction, *Chem. – Eur. J.*, 2021, **27**, 2305–2309.
- [7] Y.-H. Chen, J.-K. Ye, Y.-J. Chang, T.-W. Liu, Y.-H. Chuang, W.-R. Liu, S.-H. Liu, Y.-C. Pu, Mechanisms behind photocatalytic CO₂ reduction by CsPbBr₃ perovskite-graphene-based nanoheterostructures, *Appl. Catal. B Environ.*, 2021, **284**, 119751.
- [8] J. Zhu, Y. Zhu, J. Huang, L. Hou, J. Shen, C. Li, Synthesis of monodisperse water-stable surface Pb-rich CsPbCl₃ nanocrystals for efficient photocatalytic CO₂ reduction, *Nanoscale*, 2020,**12**,11842–11846.
- [9] S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr₃ quantum dots/UiO-66(NH₂) nanojunction as efficient visible-light-driven photocatalyst for CO₂ reduction, *Chem. Eng. J.*, 2019, **358**,1287–1295.
- [10] L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Encapsulating Perovskite Quantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO₂ Reduction, *Angew. Chem. Int. Ed.*, 2019, **58**, 9491–9495.
- [11] Y. Xi, X. Zhang, Y. Shen, W. Dong, Z. Fan, K. Wang, S. Zhong, S. Bai, Aspect ratio dependent photocatalytic enhancement of CsPbBr₃ in CO₂ reduction with two-dimensional metal organic framework as a cocatalyst, *Appl. Catal. B Environ.*, 2021, **297**, 120411.
- [12] Z.-Y. Chen, Q.-L. Hong, H.-X. Zhang, J. Zhang, Composite of CsPbBr₃ with Boron Imidazolate Frameworks as an Efficient Visible-Light Photocatalyst for CO₂ Reduction, ACS Appl. Energy Mater., 2022, 5, 1175–1182.
- [13] N. Zhang, J.-J. Li, Y. Li, H. Wang, J.-Y. Zhang, Y. Liu, Y.-Z. Fang, Z. Liu, M. Zhou, Visible-light driven boosting electron-hole separation in CsPbBr₃ QDs@2D Cu-TCPP heterojunction and the efficient photoreduction of CO₂, *J. Colloid Interface Sci.*, 2022, **608**, 3192–3203.
- [14] M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Amino-Assisted Anchoring of CsPbBr₃ Perovskite Quantum Dots on Porous $g-C_3N_4$ for Enhanced Photocatalytic CO₂ Reduction, *Angew. Chem.*, 2018, **130**, 13758–13762.