Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Successive redox modulation in an iron(II) spincrossover framework

Bang-Heng Lyu,^a Ze-Yu Ruan,^a Wen Cui,^a Si-Guo Wu,^a* Zhao-Ping Ni^a* and Ming-Liang Tong^a*

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China

Contents

Thermogravimetric analysis	3
Crystal data	5
Powder X-Ray Diffraction	10
Infrared spectra	12
XPS Measurements	15
Magnetization measurements	19

Thermogravimetric analysis

Figure S1. Thermogravimetric analysis curve of 1. The weight loss of 53.4% is close to the theoretical value of 53.0% corresponding to the escape of 2 H₂O and 7 TCE molecules.

Figure S2. Thermogravimetric analysis curve of 2. The weight loss of 52.6% is close to the theoretical value of 51.9% corresponding to the escape of 1 I_2 and 7 TCE molecules.

Figure S3. Thermogravimetric analysis curve of 3. The weight loss of 51.1% is close to the theoretical value of 50.3% corresponding to the escape of $1 H_2O$ and 8 TCE molecules.

Figure S4. Thermogravimetric analysis curve of 4. The weight loss of 57.2% is close to the theoretical value of 57.7% corresponding to the escape of 3 H_2O and 8 TCE molecules.

Crystal data

Empirical formula	C ₆₂ H ₅₀ Au	Cl ₂₈ O ₂ FeIN ₆	
Formula weight	2283.39		
Temperature/K	300.00	120.00	
Crystal system	orthorhombic	orthorhombic	
Space group	Pmmm	Pmmm	
<i>a</i> / Å	10.5117(10)	10.0549(7)	
b/Å	14.7107(14)	14.5520(10)	
<i>c</i> / Å	16.9860(17)	16.5361(12)	
α / °	90	90	
eta / °	90	90	
γ / °	90	90	
Volume / Å ³	2626.6(4)	2419.5(3)	
Ζ	1	1	
$ ho_{ m calc} m g/cm^3$	1.444	1.567	
μ/mm^{-1}	2.575	2.795	
<i>F</i> (000)	1114.0	1114.0	
Crystal size / mm ³	$0.226 \times 0.215 \times 0.205$	$0.226 \times 0.215 \times 0.205$	
Reflections collected	24957	36892	
Independent reflections	3532	3383	
Goodness-of-fit on F^2	1.081	1.185	
Final <i>R</i> indexes [$I \ge 2\sigma(I)$]	$R_1 = 0.0829, wR_2 = 0.2287$	$R_1 = 0.0519, wR_2 = 0.1533$	
Final R indexes [all data]	$R_1 = 0.0882, wR_2 = 0.2337$	$R_1 = 0.0539, wR_2 = 0.1556$	
Largest diff. peak/hole / e Å $^{-3}$	3.57/-1.28	2.52/-0.96	
CCDC	2249183	2249182	

 Table S1. Crystallographic data for 1.

 ${}^{a}R_{1} = \Sigma |F_{o}| - |F_{c}|| / \Sigma |F_{o}|; {}^{b}wR_{2} = \{ [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w (F_{o}^{2})^{2}] \}^{1/2}$

Empirical formula	C ₆₂ H ₄₆ Au	uCl ₂₈ FeI ₅ N ₆	
Formula weight	2754.96		
Temperature/K	320.0	102.00	
Crystal system	orthorhombic	orthorhombic	
Space group	Pmmm	Fmmm	
<i>a</i> / Å	10.4944(9)	19.9965(11)	
b/Å	14.6760(13)	28.2630(17)	
<i>c</i> / Å	17.0345(15)	33.579(2)	
α / °	90	90	
eta / °	90	90	
γ / °	90	90	
Volume / Å ³	2623.6(4)	18977.4(19)	
Ζ	1	8	
$ ho_{ m calc} m g/cm^3$	1.744	1.928	
μ/mm^{-1}	3.754	4.152	
<i>F</i> (000)	1306.0	10448.0	
Crystal size / mm ³	$0.397 \times 0.346 \times 0.279$	$0.234 \times 0.217 \times 0.186$	
Reflections collected	23389	44070	
Independent reflections	3085	6286	
Goodness-of-fit on F^2	1.120	1.066	
Final <i>R</i> indexes [$I \ge 2\sigma(I)$]	$R_1 = 0.1028, wR_2 = 0.2803$	$R_1 = 0.0869, wR_2 = 0.2724$	
Final R indexes [all data]	$R_1 = 0.1059, wR_2 = 0.2843$	$R_1 = 0.1082, wR_2 = 0.2919$	
Largest diff. peak/hole / e Å $^{-3}$	3.75/-2.17	2.85/-3.67	
CCDC	2249191	2249190	

Table S2.	Crystallographic	data	for	2.

 ${}^{a}R_{1} = \Sigma |F_{o}| - |F_{c}|| / \Sigma |F_{o}|; {}^{b}wR_{2} = \{ [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w (F_{o}^{2})^{2}] \}^{1/2}$

Empirical formula	C ₆₄ H ₅₀ AuCl ₃₂ OBr ₅ FeN ₆
Formula weight	2705.86
Temperature/K	120.0
Crystal system	orthorhombic
Space group	Pmmm
a / Å	10.006(3)
b / Å	14.398(5)
<i>c</i> / Å	16.704(5)
α / °	90
β / °	90
γ/°	90
Volume / Å ³	2406.5(13)
Ζ	1
$\rho_{\rm calc}{\rm g/cm^3}$	1.867
μ/mm^{-1}	4.679
<i>F</i> (000)	1308.0
Crystal size / mm ³	$0.143 \times 0.121 \times 0.116$
Reflections collected	24481
Independent reflections	2257
Goodness-of-fit on F^2	1.024
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0923, wR_2 = 0.2550$
Final R indexes [all data]	$R_1 = 0.1326, wR_2 = 0.2826$
Largest diff. peak/hole / e Å ⁻³	2.78/-1.21
CCDC	2249194

 Table S3. Crystallographic data for 3.

 ${}^{a}R_{1} = \Sigma |F_{o}| - |F_{c}|| / \Sigma |F_{o}|; \, {}^{b}wR_{2} = \{ [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w (F_{o}^{2})^{2}] \}^{1/2}$

T / K	300	120
Fe1–N1 / Å	2.124(9)	1.906(6)
Fe1-N2 / Å	2.235(5)	2.002(3)
<fe-n>^a / Å</fe-n>	2.198	1.970
$\Sigma F e^b / \circ$	4.78	4.19
Au1–C1	1.958(10)	1.964(7)
∠Fe1-N1-C1 / °	180	180
∠Au1–C1–N1 / °	180	180

Table S4. Selected bond lengths for 1

^aaverage Fe–N bond length; ^bOctahedral distortion parameters.

T / K	320	102
Fe1–N1 / Å	2.143(13)	1.892(10)
Fe1-N2 / Å	2.227(9)	1.997(6)
<fe-n>^a / Å</fe-n>	2.199	1.962
$\Sigma Fe^{b} / ^{\circ}$	3.58	14.5
Au1-C1	1.949(14)	1.943(12)
Au1–I1	2.699(11)	2.617(3)
Au1–I1A	2.658(14)	2.607(5)
Au1–I1B	-	2.586(9)
∠Fe1-N1-C1 / °	180	180
∠Au1−C1−N1 / °	180	180

Table S5. Selected bond lengths for 2

^aaverage Fe–N bond length; ^bOctahedral distortion parameters.

T / K	120
Fe1–N1 / Å	1.86(2)
Fe1-N2 / Å	2.055(12)
<fe–n>ª / Å</fe–n>	1.990
$\Sigma F e^b / ^{\circ}$	10.6
Au1-C1	1.96(3)
Au1–Br1	2.405(9)
Au1–Br2	2.405(13)
Au1–Br2A	2.394(12)
∠Fe1-N1-C1 / °	180
∠Au1−C1−N1 / °	180

Table S6. Selected bond lengths for 3

^aaverage Fe–N bond length; ^bOctahedral distortion parameters.

Powder X-Ray Diffraction

Figure S5. Powder X-ray diffraction (PXRD) patterns for **1**. The simulated PXRD pattern was obtained from crystal data at 300 K.

Figure S6. Powder X-ray diffraction (PXRD) patterns for **2**. The simulated PXRD pattern was obtained from crystal data at 320 K.

Figure S7. Powder X-ray diffraction (PXRD) patterns for **3**. The simulated PXRD pattern was obtained from crystal data at 120 K.

Figure S8. Powder X-ray diffraction (PXRD) patterns for 4. The simulated PXRD pattern was obtained from crystal data of 1 at 300 K.

Infrared spectra

Figure S9. The infrared spectrum of 1.

Figure S10. The infrared spectrum of 2.

Figure S11. The infrared spectrum of 3.

Figure S12. The infrared spectrum of 4.

Figure S13. The infrared spectrum of the oxidation product obtained by reacting 1 with 0.1 M I_2 for 120 min. Inset: the enlarged view of the cyanide vibration signals for the products after being oxidized by 0.1 M I_2 for 30 and 120 min.

XPS Measurements

X-ray photoelectron spectroscopy (XPS) measurements were carried out with the Thermo Fisher Scientific ESCALAB Xi+ system (Al- K_{α} source). Sequential XPS spectra were recorded by scanning the electron analyzer from 100 to 75 eV (increment: 0.05 V, pass energy: 20.0 eV). The total acquisition times for Au 4f scan were about 3.5 min for 1, about 0.5 min for 2 and 3 and about 1 min for 4. The peak analysis processes were carried out with the XPSPEAK41 package. The electron-scattering background was deducted using a Shirley method without changing the intrinsic profile of raw data. The intervals and area ratios of $4f_{7/2}$ and $4f_{5/2}$ were restricted to 3.67 eV and 4:3 according to the literature. The full-width-at-half-maximum of the $4f_{7/2}$ and $4f_{5/2}$ doublets was fitted equally. The best fitted results were obtained by using a pseudo-Voigt function (20% Gaussian and 80% Lorentzien).

Figure S14. X-ray photoelectron spectroscopy of Au 4f in 1.

Peak	Position / eV	Area	FWHM / eV
$\mathrm{Au^{I}}4f_{7/2}$	85.154	8634.142	2.243
$\mathrm{Au}^{\mathrm{I}}4\mathrm{f}_{\mathrm{5/2}}$	88.824	6475.606	2.243

Table S7. The parameters of best fit results of Au 4f in 1.

Figure S15. X-ray photoelectron spectroscopy of Au 4f in 2.

Peak	Position / eV	Area	FWHM / eV
$Au^{I} 4f_{7/2}$	85.287	9663.406	2.680
$Au^I 4f_{5/2}$	88.957	7247.555	2.680

 Table S8. The parameters of best fit results of Au 4f in 2.

Figure S16. X-ray photoelectron spectroscopy of Au 4f in 3.

Peak	Position / eV	Area	FWHM / eV
$Au^I4f_{7/2}$	85.427	3694.506	1.887
$Au^I4f_{5/2}$	89.097	2770.879	1.887
$Au^{III}4f_{7/2}$	87.479	1510.974	1.560
$Au^{III}4f_{5/2}$	91.149	1133.231	1.560

 Table S9. The parameters of best fit results of Au 4f in 3.

Figure S17. X-ray photoelectron spectroscopy of Au 4f in 4.

Table S10. The para	meters of best	fit results	of Au 4f in	4 .
---------------------	----------------	-------------	-------------	------------

Peak	Position / eV	Area	FWHM / eV
$Au^I4f_{7/2}$	85.368	22125.31	1.697
$Au^I4f_{5/2}$	89.038	16593.98	1.697

Magnetization measurements

Magnetic susceptibility measurements were performed on a Quantum Design PPMS3 SQUID magnetometer with a sweep rate of 2 K min⁻¹ under applied field of 5 kOe. Polycrystalline samples were packed in plastic film with a small amount of mother liquor. Data were corrected for the signal of the sample holder and diamagnetic contribution calculated from Pascal's constants.

Figure S18. The temperature-dependent magnetic susceptibility data of 1 with a sweep rate of 2 K min⁻¹.

Figure S19. The temperature-dependent magnetic susceptibility data of 2 with a sweep rate of 2 K min⁻¹.

Figure S20. The temperature-dependent magnetic susceptibility data of 3 with a sweep rate of 2 K min⁻¹.

Figure S21. The temperature-dependent magnetic susceptibility data of 4 with a sweep rate of 2 K min⁻¹.