#### SUPPLEMENTARY MATERIAL

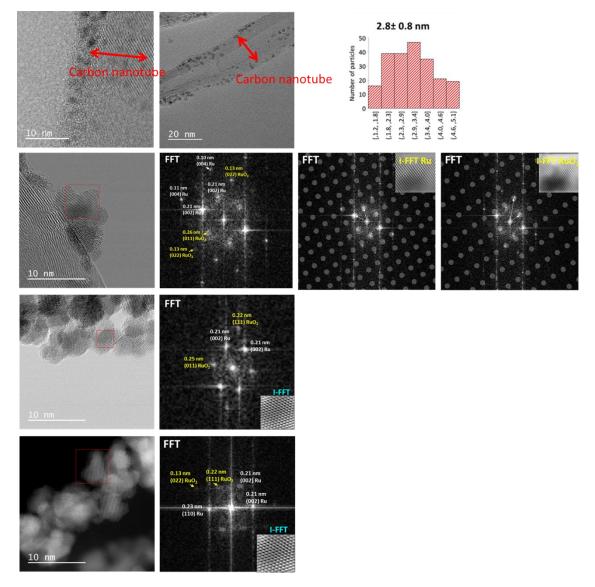
## Ru-based nanoparticles supported on carbon nanotubes for electrocatalytic hydrogen evolution: structural and electronic effects

Nuria Romero,<sup>a,b\*,&</sup> Dídac A. Fenoll,<sup>a,&</sup> Laia Gil,<sup>a</sup> Sergi Campos,<sup>a</sup> Jordi Creus,<sup>a,b</sup> Gerard Martí,<sup>a</sup> Javier Heras-Domingo,<sup>a</sup> Vincent Collière,<sup>b</sup> Camilo A. Mesa,<sup>c</sup> Sixto Giménez,<sup>c</sup> Laia Francàs,<sup>a</sup> Luis Rodríguez-Santiago,<sup>a</sup> Xavier Solans-Monfort,<sup>a\*</sup> Mariona Sodupe,<sup>a</sup> Roger Bofill,<sup>a</sup> Karine Philippot,<sup>b\*</sup> Jordi García-Antón,<sup>a</sup> and Xavier Sala<sup>a\*</sup>

<sup>a</sup> Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia (Spain). E-mail: <u>xavier.sala@uab.cat</u>, <u>xavier.solans@uab.cat</u>

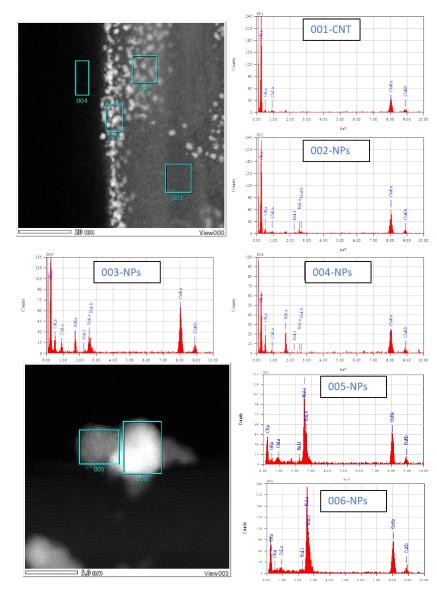
<sup>b</sup> CNRS, LCC (Laboratoire de Chimie de Coordination), UPR8241, Université de Toulouse, UPS, INPT, F-31077 Toulouse cedex 4, France. E-mail: <u>nuria.romero@lcc-toulouse.fr</u>, <u>karine.philippot@lcc-toulouse.fr</u>

<sup>c</sup> Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicente Sos Baynat, s/n, 12006 12006 Castelló de la Plana, Castellón, Spain.

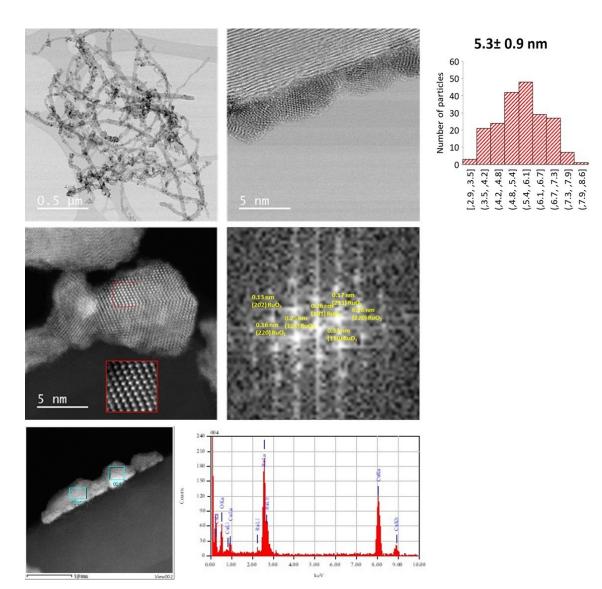

\* Corresponding authors

& These authors contributed equally to this work.

#### List of Contents


# 1. Electron microscopy characterization of the hybrid nanomaterials32. HER catalytic studies of the hybrid nanomaterials73. Computational studies11

#### page




1. Electron microscopy characterization of the hybrid nanomaterials


**Figure S1**. HRTEM images and size histogram of the **Ru@RuO<sub>2</sub>/CNT** nanomaterial, including electron diffraction patterns after Fast Fourier Transform treatment of individual nanoparticles (on a holy carbon covered Cu grid).



**Figure S2.** EDX spectra on different regions of HRTEM images of **Ru@RuO<sub>2</sub>/CNT**: general EDX analysis (top) and nanoparticle analysis (bottom, holy carbon covered Cu grid).



**Figure S3.** TEM and HRTEM images, NPs size histogram, FFT pattern and EDX analysis of the **RuO<sub>2</sub>-10'/CNT** nanomaterial.



**Figure S4.** TEM and HRTEM images, NPs size histogram and EDX analysis of the **RuO<sub>2</sub>-120'/CNT** nanomaterial.

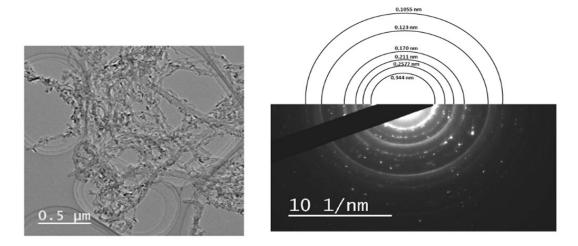
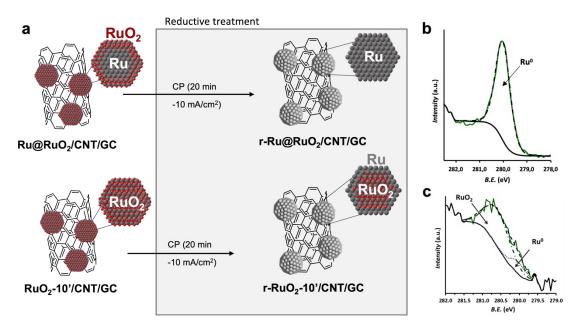
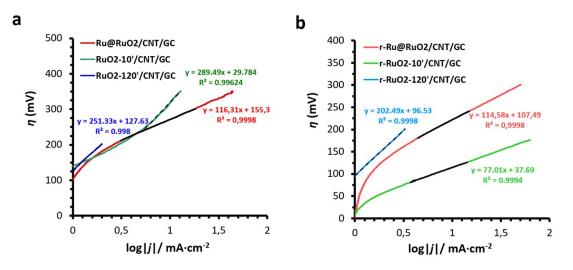





Figure S5. Electron diffraction analysis of a large zone of the RuO<sub>2</sub>-120'/CNT nanomaterial.

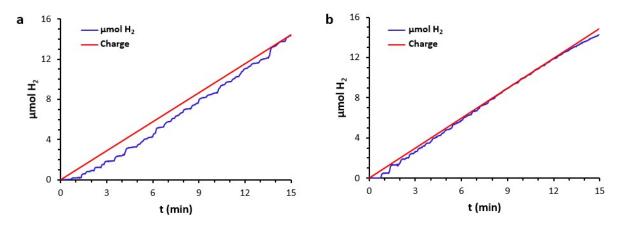
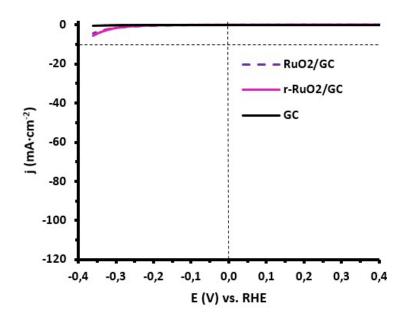
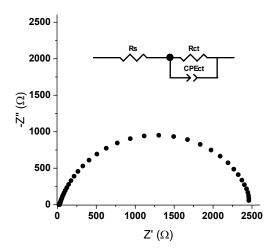
#### 2. HER catalytic studies of the hybrid nanomaterials

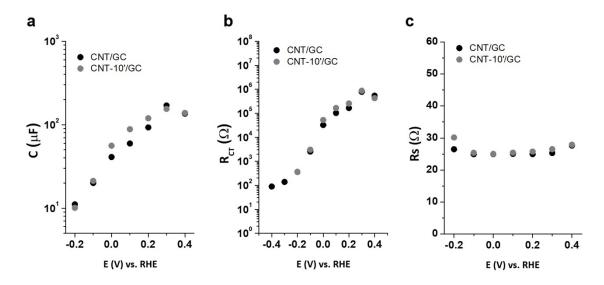


**Figure S6.** (a) Scheme of the chronopotentiometry reductive treatment applied to the GC RDE deposited nanomaterials, leading to their reduced counterparts. (b) XPS spectrum of **r-Ru@RuO<sub>2</sub>/CNT/GC** and (c) XPS spectrum of **r-RuO<sub>2</sub>-10'/CNT/GC**. The RuO<sub>2</sub> component is shown in dotted-dashed black, the Ru(0) component in dotted black, the envelope in dashed black, the experimental data in solid green and the background signal in solid black.



**Figure S7.** Tafel plots in 1 M H<sub>2</sub>SO<sub>4</sub> corresponding to the HER process of **Ru@RuO<sub>2</sub>/CNT/GC** (red), **RuO<sub>2</sub>-10'@CNT/GC** (green) and **RuO<sub>2</sub>-120'/CNT/GC** (blue) (a), and of their reduced counterparts, **r-Ru@RuO<sub>2</sub>/CNT/GC** (orange), **r-RuO<sub>2</sub>-10'/CNT/GC** (light green) and **r-RuO<sub>2</sub>-120'/CNT/GC** (light blue) after a 20 min reductive chronopotentiometry at j = -10 mA·cm<sup>-2</sup> (b).



Figure S8.  $H_2$  measurement during a reductive CP at -10 mA·cm<sup>-2</sup> for r-Ru@RuO<sub>2</sub>/CNT/FTO (a), and r-RuO<sub>2</sub>-10'/CNT/FTO, (b), in 1 M H<sub>2</sub>SO<sub>4</sub>.



**Figure S9**. LSVs in 1 M H<sub>2</sub>SO<sub>4</sub> of bulk commercial **RuO<sub>2</sub>/GC** (dashed purple), **r-RuO<sub>2</sub>/GC** (solid pink) and the bare GC electrode (solid black). The thermodynamic HER potential in 1 M H<sub>2</sub>SO<sub>4</sub> and the reference j = -10 mA·cm<sup>-2</sup> current density are indicated as black dashed lines.

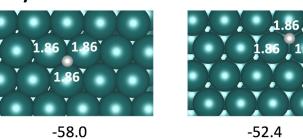


**Figure S10.** Typical Nyquist obtained for the electrodes studied herein. Nyquist plot of **CNT/GC** measured at -0.3 V vs NHE. Inset: Randles circuit employed to fit the experimental data.

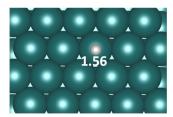


**Figure S11.** Impedance spectroscopy results C, R1 and Rs, fitting the Nyquist plots to a simple Randles circuit of **CNT/GC** (black) and **CNT-10'/GC** (dark grey). (a) Capacitance (C), (b) charge transfer resistance ( $R_{CT}$ ) and (c) series resistance (Rs).

| Entry | System                                       | <i>NP mean size</i><br>(nm)                                                 | NP composition                               | η₀<br>(mV) | η <sub>10</sub><br>(mV) | b<br>(mV·dec⁻¹) |
|-------|----------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|------------|-------------------------|-----------------|
| 1     | Ru@RuO₂/CNT/GC                               | 2.8 ± 0.8                                                                   | Ru <sup>0</sup> /RuO <sub>2</sub> core/shell | 200        | 272                     | 116             |
| 2     | r-Ru@RuO₂/CNT/GC <sup>↑</sup>                |                                                                             | Ru <sup>o</sup> "                            | 150        | 222                     | 115             |
| 3     | RuO <sub>2</sub> -10'/CNT/GC                 | 5.3 ± 0.9                                                                   | RuO <sub>2</sub>                             | 130        | 319                     | 289             |
| 4     | r-RuO <sub>2</sub> -10'/CNT-/GC <sup>i</sup> |                                                                             | RuO <sub>2</sub> /Ru <sup>0</sup> core/shell | 50         | 115                     | 77              |
| 5     | RuO <sub>2</sub> -120'/CNT/GC                | Nanorods:<br>broad (6.7 ±<br>1.5 nm) and<br>long (24.8 ± 5.5<br>m) crystals | RuO <sub>2</sub>                             | 125        | -                       | 251             |
| 6     | r-RuO <sub>2</sub> -120'/CNT/GC <sup>i</sup> |                                                                             | RuO <sub>2</sub>                             | 95         | -                       | 202             |

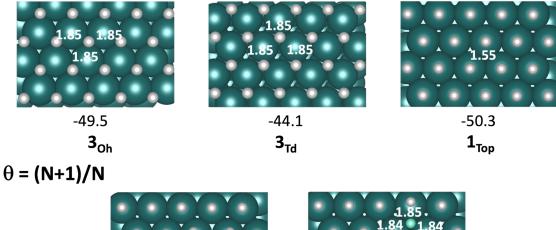

**Table S1.** Main physicochemical and electrochemical data of the CNT-supported Ru-based nanomaterials for HER in  $1 \text{ M H}_2\text{SO}_4$ .

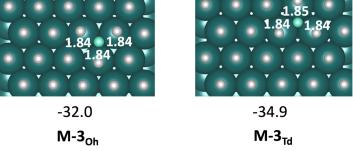
<sup>*i*</sup> These nanomaterials were treated under chronopotentiometry reductive conditions (j = -10 mA·cm<sup>-2</sup>) for 20 min. <sup>*ii*</sup> The oxidation state is assumed on the basis of literature data (ref. 5).


#### 3. Computational studies

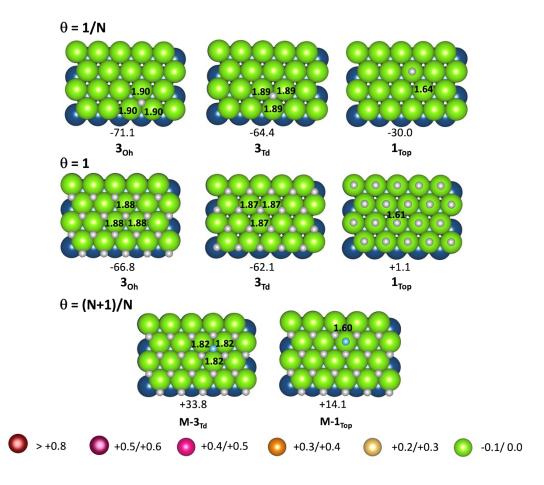
3<sub>Oh</sub>



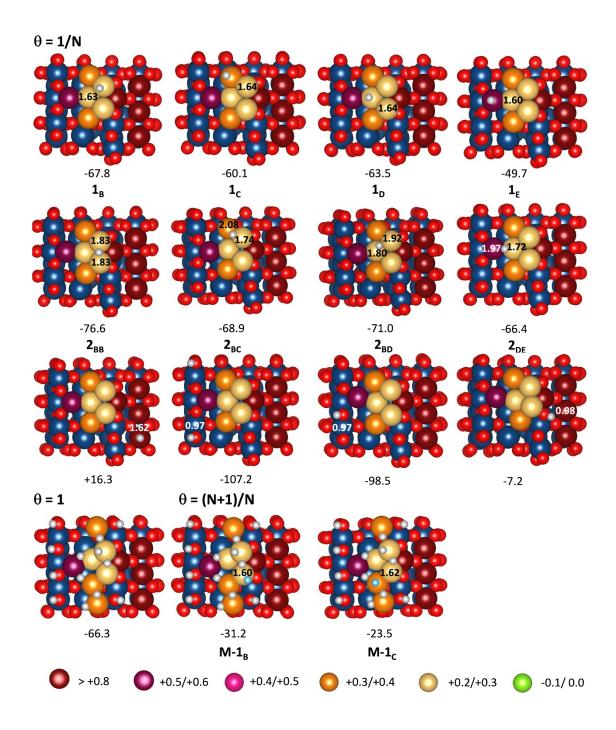




3<sub>Td</sub>

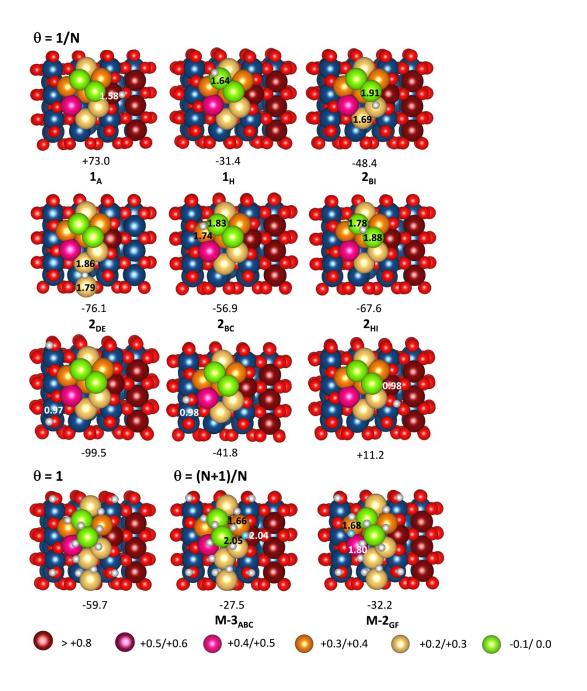



-56.3 **1<sub>Тор</sub>** 

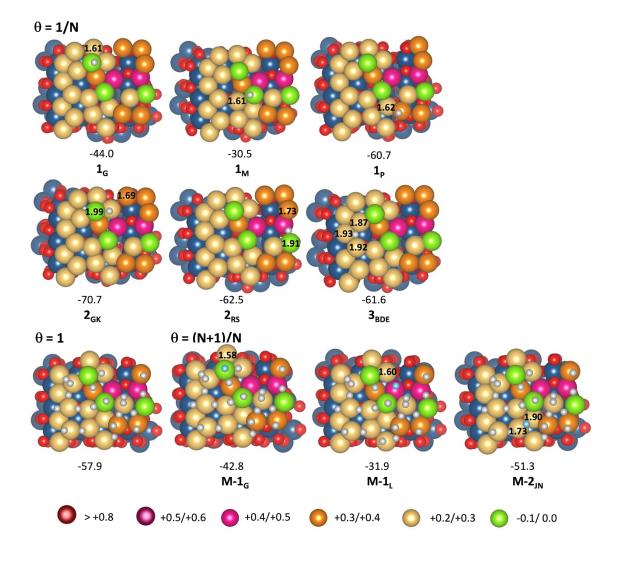
 $\theta = \mathbf{1}$ 





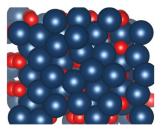


**Figure S12.** Optimized structures and adsorption energies for hydrogen onto a **Pt** surface as a function of the coverage. The additional hydrogen in the  $\theta$  = 1 coverage is represented in pale green. Pt-H distances are in Å and energies in kJ·mol<sup>-1</sup>.




**Figure S13.** Optimized structures and adsorption energies for hydrogen onto a **Ru** surface as a function of the coverage. The additional hydrogen in the  $\theta$  = 1 coverage is represented in pale blue. The outermost atom color labeling indicates the atomic Bader charges of the pristine material. Ru-H distances are in Å and energies in kJ·mol<sup>-1</sup>.



**Figure S14.** Optimized structures and adsorption energies for hydrogen onto a  $RuO_2@Ru_7$  model of **r-RuO\_2-10'/CNT/GC** as a function of the coverage. The additional hydrogen in the  $\theta = 1$  coverage is represented in pale blue. The outermost atom color labeling indicates the atomic Bader charges of the pristine material. Ru-H distances are in Å and energies in kJ·mol<sup>-1</sup>.




**Figure S15.** Optimized structures and adsorption energies for hydrogen onto a  $RuO_2@Ru_{10}$  model of **r-RuO<sub>2</sub>-10'/CNT/GC** as a function of the coverage. The additional hydrogen in the  $\theta$  = 1 coverage is represented in pale blue. The outermost atom color labeling indicates the atomic Bader charges of the pristine material. Ru-H distances are in Å and energies in kJ·mol<sup>-1</sup>.



**Figure S16.** Optimized structures and adsorption energies for hydrogen onto a  $RuO_2@Ru_{20}$  model of **r-RuO<sub>2</sub>-10'/CNT/GC** as a function of the coverage. The additional hydrogen in the  $\theta$  = 1 coverage is represented in pale blue. The outermost atom color labeling indicates the atomic Bader charges of the pristine material. Ru-H distances are in Å and energies in kJ·mol<sup>-1</sup>.

## Top view



### Side view

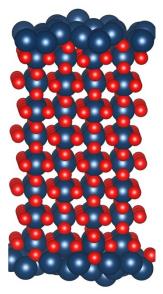



Figure S17.  $RuO_2@Ru_{20}$  model including eight  $RuO_2$  layers in the core.