Up-conversion effect boosted photocatalytic CO₂ reduction activity of

Z-scheme CPDs/BiOBr heterojunction

Jing Xie, Xiaojing Zhang, Zhenjiang Lu, Jindou Hu, Aize Hao, Yue Feng, Yali

Cao*

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy

Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR

China.

Correspondence: caoyali523@163.com, xiejing@xju.edu.cn; Tel.: +86-991-8583083; Fax: +86-991-8588883.

Fig. S1 Schematic illustration of the synthetic process of CPDs/BiOBr

Fig. S2 Schematic diagram of Labsolar-6A in photocatalytic CO₂ reduction

Fig. S3 XRD pattern of CPDs

Fig. S4 XPS spectra of BiOBr, CPDs and 6 wt%

Fig. S5 Up-converted PL spectra of CPDs

Fig. S6 EIS spectra of BiOBr and 6 wt% CPDs/BiOBr

Fig. S7 Band gap structure of CPDs and BiOBr

Photocatalysts	Light sources	Reaction conditions	Main products	Evolution rate $(\mu mol \cdot g^{-1} \cdot h^{-1})$	Ref.
CPDs/BiOBr	300 W Xe-lamp	Gas-solid reaction	СО	144.6	This work
AgBr/BiOBr	300 W Xe-lamp	Liquid-solid reaction	СО	12.43	[1]
BiOBr/CdS	300W Xe-lamp	Liquid-solid reaction	СО	4.53	[2]
BiOBr/Zn(OH) ₂	300 W Xe-lamp	Liquid-solid reaction	СО	5.4	[3]
BiOBr/Bi ₂ WO ₆	300 W Xe-lamp	Gas-solid reaction	СО	55.17	[4]
OV-BiOBr	300 W Xe-lamp	Liquid-solid reaction	СО	2.03	[5]
Bi-CTS/BiOBr	300 W Xe-lamp	Liquid-solid reaction	СО	50.13	[6]
BiOBr/HNb ₃ O ₈	300 W Xe-lamp	Gas-solid reaction	СО	32.92	[7]
BiOBr/ACSs	300 W Xe-lamp	Liquid-solid reaction	СО	23.74	[8]
BiOBr/Bi ₂ S ₃	300 W Xe-lamp	Liquid-solid reaction	CO/CH ₄	100.8/8.5	[9]
BiOBr/CoAl- LDH	300 W Xe-lamp	Liquid-solid reaction	CO/CH ₄	4.096/4.174	[10]
BiOBr/NiO	300 W Xe-lamp	Gas-solid reaction	CO/CH ₄	12.8/6.6	[11]

Table S1 Bismuth oxybromide composite photocatalysts for CO_2

reduction

Supplementary references

[1] Y. Xie, Y. P. Zhou, C. M. Gao, L. J. Liu, Y. F. Zhang, Y. Chen and Y. Shao, Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduction of CO₂ to CO under visible light, *Sep. Purif. Technol.*, 2022, **303**, 122288.

[2] Q. Yang, W. Z. Qin, Y. Xie, K. Zong, Y. Guo, Z. Q. Song, G. Luo, W. Raza, A. Hussain, Y. Ling, J. M. Luo, W. Zhang, H. Ye and J. Zhao, Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO₂ photoreduction, *Sep. Purif. Technol.*, 2022, **298**, 121603.

[3] W.Z. Qin, Q. Yang, H. Ye, Y. Xie, Z. Shen, Y. Guo, Y.G. Deng, Y. Ling, J. Yu, G. Luo, N. Raza, W. Raza, J. Zhao, Novel 2D/2D BiOBr/Zn(OH)₂ photocatalysts for efficient photoreduction CO₂, *Sep. Purif. Technol.*, 2023, **306**, 122721.

[4] J. M. Wu, K. Y. Li, S. Y. Yang, C. S. Song and X. W. Guo, In-situ construction of BiOBr/Bi₂WO₆ S-scheme heterojunction nanoflowers for highly efficient CO₂ photoreduction: Regulation of morphology and surface oxygen vacancy, *Chem. Eng. J.*, 2023, **452**, 139493.

[5] L. Wang, G. P. Liu, B. Wang, X. Chen, C. T Wang, Z. X Lin, J. X Xia and H. M. Li, Oxygen vacancies engineering-mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO₂ reduction, *Sol. RRL*, 2021, 5, 2000480.

[6] Z. H. Li, Y. Y. Rong, J. X. Liang, Z. J. Li, J. W. Wei, J. L. Li, S. M. Zhang, T. Liang, Z. B. Yu and Y. P. Hou, In-situ generation of Bi_0 NCs and vacancies on Bi-CTS/BiOBr heterostructures accelerate electron transfer for promoting photocatalytic reduction of CO_2 , *J. Environ. Chem. Eng.*, 2022, **10**, 108819.

[7] C. J. Zhou, X. L. Shi, D. Li, Q. Song, Y. M. Zhou, D. L. Jiang and W. D. Shi, Oxygen vacancy engineering of BiOBr/HNb₃O₈ Z-scheme hybrid photocatalyst for boosting photocatalytic conversion of CO₂, *J. Colloid Interf. Sci.*, 2021, **599**, 245-254.
[8] K. L. Liu, X. C. Zhang, C. M. Zhang, G. M. Ren, Z. F. Zheng, Z. P. Lv and C. M Fan, Enhanced photocatalytic reduction of CO₂ to CO over BiOBr assisted by phenolic

resin-based activated carbon spheres, Rsc Adv., 2019, 9, 14391-14399.

[9] Z. R. Miao, Y. F. Zhang, N. Wang, P. Xu and X. X. Wang, $BiOBr/Bi_2S_3$ heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO₂ with H₂O, *J. Colloid Interf. Sci.*, 2022, **620**, 407-418.

[10] Y. Lu, D. B Wu, Y. C Qin, Y. Xie, Y. Ling, H. Ye and Y. F. Zhang, Facile construction of BiOBr/CoAl-LDH heterojunctions with suppressed Z-axis growth for efficient photoreduction of CO₂, *Sep. Purif. Technol.*, 2022, **302**, 122090.

[11] Z. L. Wang, B. Cheng, L. Y. Zhang, J. G. Yu and H. Y. Tan, BiOBr/NiO S-scheme heterojunction photocatalyst for CO₂ photoreduction, *Sol. RRL*, 2022, **6**, 2100587.