Constructing VS_4 - V_2CT_x heterojunction interface to realize ultralong lifetime and high rate capability in sodium-ion batteries

Lin Chen¹, Mingshan Wang^{1,2*}, Enzhi Li¹, Xi Hu, Siming Huang¹, Zhenliang Yang³, Dan Zhou⁴, Haijiao Xie⁵, Junchen Chen^{1,2}, Zhiyuan Ma^{1,2}, Bingshu Guo^{1,2}, Bo Yu^{1,2}, Xing Li^{1,2*}

¹School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

²Energy Storage Research Institute, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

³Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621908, P.R. China

⁴Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China

⁵Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang, 310003, P.R. China

¹ Corresponding author: E-mail: ustbwangmingshan@163.com (Mingshan Wang) , lixing198141@yahoo.com (Xing Li).

TGA analysis to calculate V₂CT_x content in VS₄-V₂CT_x

Assume that the amount lost during thermal decomposition of each component in the VS_4 - V_2CT_x composite sample, and the amount decomposed when the components are pure substances remain constant. At this point we assume that the content of V₂CT_x and VS₄ in the composite sample is X and Y respectively, thereby setting out the following system of equations:

- -

Therefore, X=21.87% Y=78.13%

The Na⁺ ion diffusion $\binom{D_{Na^+}}{Na^+}$ for VS₄-V₂CT_x and VS₄ electrodes is calculated according to the following equation:

$$D_{Na^+} = 0.5(RT/AF2C\sigma)^2$$

where R = 8.314 J mol⁻¹ K⁻¹, T = 303.15 K, A = 1.54 cm², F = 9.6486 × 10⁴ C mol⁻¹, $C\approx 2\,\times\,10^{\text{-2}}$ mol cm^{\text{-3}} , σ represents the Warburg impedance coefficient can be obtained from the following equation:

$$Z_{re} = R_e + R_{ct} + \sigma \omega^{-1/2}$$

The σ_w of the two electrodes are obtained by fitting in Figure S6 (b).

Figure S1. (a) SEM image of V_2CT_x , and (b) SEM image of VS_4 ;

Figure S2 (a) Nitrogen adsorption–desorption isotherm of the VS₄ and (b) VS₄-V₂CT_x composites, the inset in (a) (b)shows the corresponding pore size distribution plot.

Material	BET surface	DFT				
	(m^2g^{-1})	Pore Volume	Surface area	Pore width		
		$(cm^2 g^{-1})$	(m^2g^{-1})	(nm)		
VS_4	35.7	0.10	24.0	3.8		
VS ₄ -V ₂ CT _x	33.4	0.11	27.8	26.1		

Table S1 BET data and pores data for VS4 and VS4-V2CTx

Figure S3. (a) CV curves of the VS₄ electrode and (b) Galvanostatic charge/discharge curves of VS₄

Figure S4. (a) CV curves of the VS₄ electrode tested at different scan rates; (b) relationship between log i and log v plots of the VS₄ electrode; (c) capacitance contribution at 1.0 mV s⁻¹ for the VS₄ electrode; (h) capacitance contribution of the VS₄ electrode at different scan rates

Figure S5. (a) CV curves of the V_2CT_x electrode tested at different scan rates; (b) relationship between log i and log v plots of the V_2CT_x electrode; (c) capacitance contribution at 1.0 mV s⁻¹ for the V_2CT_x electrode; (h) capacitance contribution of the V_2CT_x electrode at different scan rates

Figure S6. (a) The Nyquist plots and (b) linear fits in low-frequency regions of the VS_4 - V_2CT_x and VS_4 electrodes after 100 cycles at discharge state.

Samples	R _e	$R_{ m f}$	$R_{\rm ct}$	$\sigma \left(\Omega \ { m cm}^2 \ { m s}^{-1/2} ight)$	$D_{\rm Na}^{+}({\rm cm}^2~{ m s}^{-1})$
VS_4	11.01	18.25	295.4	175.9161	5.22*10-6
VS ₄ -V ₂ CT _x	16.66	6.51	140.1	86.9167	2.14*10 ⁻⁵

Table S2 Electrochemical impedance parameters of the VS₄ and VS₄-V₂CT_x electrodes

Figure S7. Total density of states of (a) VS_4 and (b) VS_4 - V_2CT_x heterojunction.

Figure S8. (a) CV curves of the VS₄-V₂C and Na₃V₂(PO₄)₃@C electrode at 0.1 mV s⁻¹; (b) Long cycling performance of Na₃V₂(PO₄)₃@C electrode at a current density of 1 A g⁻¹ (0.1 A g⁻¹ for the first three cycles);