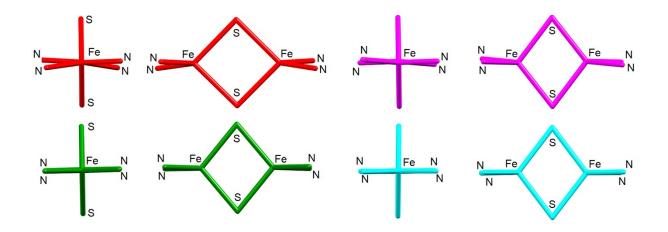
## Supplementary Information

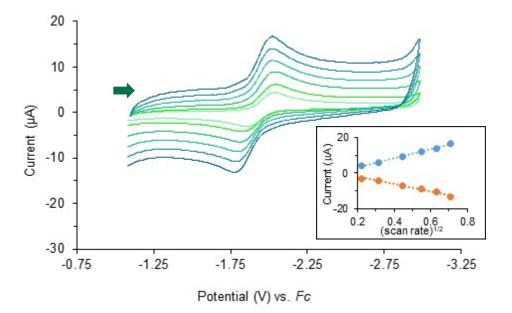
## Synthesis, Kinetic Studies, and Atom Transfer Reactivity of [2Fe-2E] (E = S, Se) Model Compounds

Erwin A. Weerawardhana,<sup>a</sup> Matthias Zeller,<sup>b</sup> Wei-Tsung Lee<sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States.


<sup>b</sup> Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States.

## **Table of Contents**


|                                                                                                                                                                                                                                                                                                                                                                                                                          | Page       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table S1. Crystal data and structure refinement details for 1 and 2.                                                                                                                                                                                                                                                                                                                                                     | S3         |
| <b>Figure S1</b> . Front-view (along FeFe axis) and side-view of truncated [2Fe-2S] model compounds 1 (red), 3 (green), 4 (magenta), and 5 (cyan) supported by $\beta$ -diketiminate ligands.                                                                                                                                                                                                                            | S4         |
| <b>Figure S2</b> . Overlaid cyclic voltammograms of <b>2</b> (1mM) in THF with 0.1 M N(Bu) <sub>4</sub> PF <sub>6</sub> .<br>Scan rates = 50, 100, 200, 300, 400, 500 mV/s referenced to a ferrocene/ferrocenium redox couple ( <i>Fc</i> ). Inset: Plot of cathodic peak current ( $\bullet$ , R <sup>2</sup> = 0.9911) and anodic peak current ( $\bullet$ , R <sup>2</sup> = 0.9834) versus square root of scan rate. | S4         |
| Figure S3. UV–vis spectra of 0.1 mM 1 (—) and 2 (—) in THF.                                                                                                                                                                                                                                                                                                                                                              | S5         |
| <b>Figure S4</b> . Reduction of 0.1 mM <b>2</b> in THF by addition of $CoCp*_2$ in increments of 0.25 equiv as monitored by UV–vis spectroscopy (path length, 1.0 cm). Inset: Corresponding changes of the absorbance at 396 ( $\diamond$ ) and 614 ( $\bullet$ ) nm.                                                                                                                                                    | S5         |
| <b>Figure S5</b> . Plot of observed pseudo-first order rate constants, $k_{obs}$ , versus concentration of ${}^{32}S_8$ at 25 °C. The slope corresponds to the second-order rate constants.                                                                                                                                                                                                                              | S6         |
| <b>Figure S6</b> . Plot of observed pseudo-first order rate constants, $k_{obs}$ , versus concentration of ${}^{34}S_8$ at 25 °C. The slope corresponds to the second-order rate constants.                                                                                                                                                                                                                              | S6         |
| <b>Figure S7</b> . Eyring plot for the formation of 1 by treating (L1)Fe(cod) with ${}^{32}S_8$ to in toluene.                                                                                                                                                                                                                                                                                                           | S7         |
| Scheme S1. The proposed catalytic cycle of S atom transfer reaction in the presence of $(L1)Fe(cod)$ and excess S <sub>8</sub> and PPh <sub>3</sub>                                                                                                                                                                                                                                                                      | S7         |
| Figure S8. <sup>1</sup> H NMR spectrum of 1 in $C_6D_6$ .                                                                                                                                                                                                                                                                                                                                                                | <b>S</b> 8 |
| Figure S9. <sup>1</sup> H NMR spectrum of 2 in $C_6D_6$ .                                                                                                                                                                                                                                                                                                                                                                | S9         |
| Figure S10. IR spectrum of 1.                                                                                                                                                                                                                                                                                                                                                                                            | S9         |
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                | S10        |

|                                         | 1                                                                            | 2                         |
|-----------------------------------------|------------------------------------------------------------------------------|---------------------------|
| Empirical formula                       | $\mathrm{C}_{50}\mathrm{H}_{65}\mathrm{Fe}_{2}\mathrm{N}_{4}\mathrm{Se}_{2}$ | $C_{50}H_{65}Fe_2N_4Se_2$ |
| Formula weight                          | 898.89                                                                       | 991.68                    |
| Space group                             | $P2_{1}2_{1}2_{1}$                                                           | $P2_1$                    |
| a/Å                                     | 13.6176(8)                                                                   | 10.2202(5)                |
| b/Å                                     | 16.6881(9)                                                                   | 18.5554(8)                |
| c/Å                                     | 21.1555(10)                                                                  | 13.4719(5)                |
| $a/^{\circ}$                            | 90                                                                           | 90                        |
| $b/^{\circ}$                            | 90                                                                           | 111.726(3)                |
| $g^{ m /\circ}$                         | 90                                                                           | 90                        |
| <i>V</i> /Å <sup>3</sup>                | 4807.6                                                                       | 2373.33(18)               |
| Ζ                                       | 4                                                                            | 2                         |
| $D_{\text{calcd}}$ , g cm <sup>-3</sup> | 1.242                                                                        | 1.388                     |
| <i>F</i> (000)                          | 1912.0                                                                       | 1026.0                    |
| Temp, K                                 | 100                                                                          | 100                       |
| <i>R</i> (F), %                         | 6.95                                                                         | 5.93                      |
| $R_{\rm w}({\rm F}),$ %                 | 17.26                                                                        | 14.01                     |

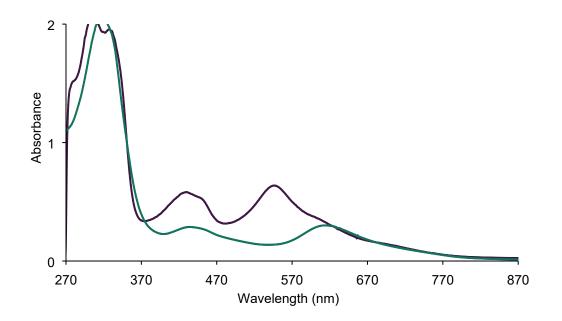
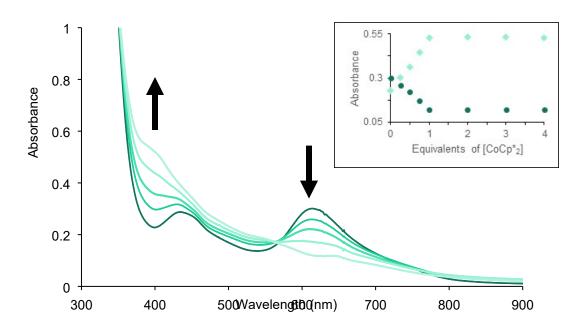
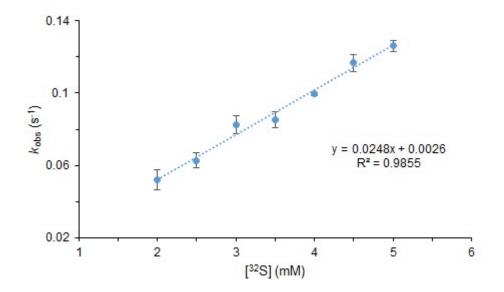
 Table S1. Crystal data and structure refinement details for 1 and 2.

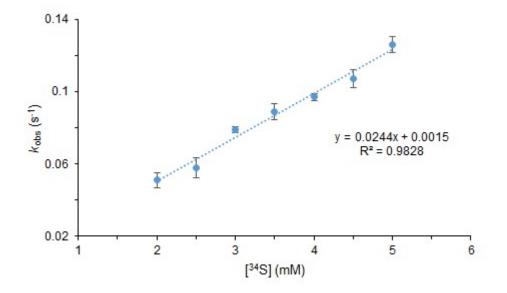


**Figure S1**. Front-view (along Fe···Fe axis) and side-view of truncated [2Fe-2S] model compounds 1 (red), 3 (green), 4 (magenta), and 5 (cyan) supported by  $\beta$ -diketiminate ligands.



**Figure S2**. Overlaid cyclic voltammograms of **2** (1mM) in THF with 0.1 M N(Bu)<sub>4</sub>PF<sub>6</sub>. Scan rates = 50, 100, 200, 300, 400, 500 mV/s referenced to a ferrocene/ferrocenium redox couple (*Fc*). Inset: Plot of cathodic peak current ( $\bullet$ , R<sup>2</sup> = 0.9911) and anodic peak current ( $\bullet$ , R<sup>2</sup> = 0.9834) versus square root of scan rate.



Figure S3. UV-vis spectra of 0.1 mM 1 (--) and 2 (--) in THF.



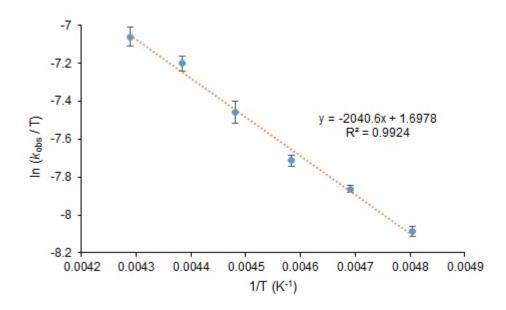
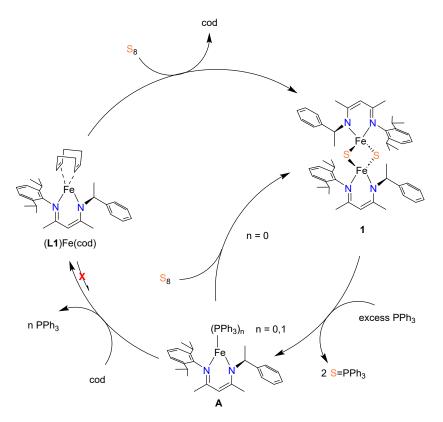
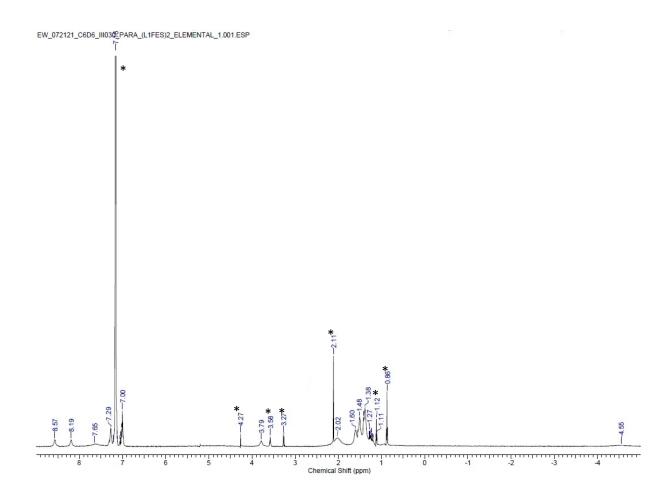
**Figure S4**. Reduction of 0.1 mM **2** in THF by addition of  $CoCp*_2$  in increments of 0.25 equiv as monitored by UV–vis spectroscopy (path length, 1.0 cm). Inset: Corresponding changes of the absorbance at 396 ( $\bullet$ ) and 614 ( $\bullet$ ) nm.

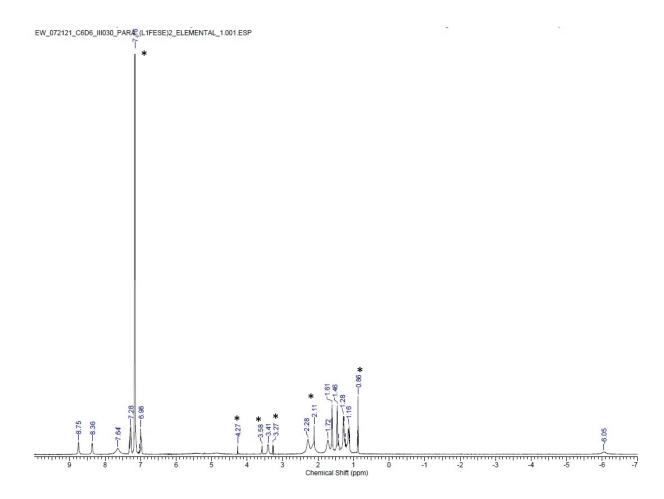


**Figure S5**. Plot of observed pseudo-first order rate constants,  $k_{obs}$ , versus concentration of  ${}^{32}S_8$  at 25 °C. The slope corresponds to the second-order rate constants.



**Figure S6**. Plot of observed pseudo-first order rate constants,  $k_{obs}$ , versus concentration of  ${}^{34}S_8$  at 25 °C. The slope corresponds to the second-order rate constants.



Figure S7. Eyring plot for the formation of 1 by treating (L1)Fe(cod) with  ${}^{32}S_8$  to in toluene.

Scheme S1. The proposed catalytic cycle of S atom transfer reaction in the presence of (L1)Fe(cod) and excess S<sub>8</sub> and PPh<sub>3</sub>. Note: (L1)Fe(cod) does not convert to A in the presence of 10 equiv of PPh<sub>3</sub> according to the reaction monitored by <sup>1</sup>H NMR spectroscopy.





**Figure S8**. <sup>1</sup>H NMR spectrum of **1** in C<sub>6</sub>D<sub>6</sub>. \* solvent residual peaks ( $\delta$ ): DCM (4.27), THF (3.85), Et<sub>2</sub>O (3.27, 1.12), toluene (2.11), and n-pentane (0.86).<sup>1</sup>



**Figure S9**. <sup>1</sup>H NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>. \* solvent residual peaks ( $\delta$ ): DCM (4.27), THF (3.85), Et<sub>2</sub>O (3.27), toluene (2.11), and n-pentane (0.86).<sup>1</sup>

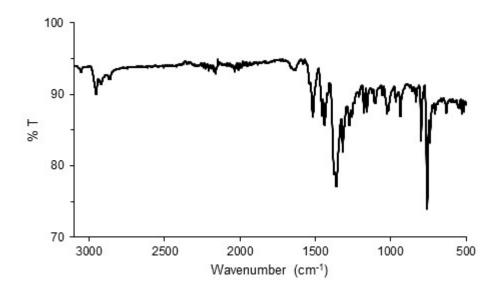



Figure S10. IR spectrum of 1.

## **Reference:**

1. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* 2010, **29**, 2176–2179.