Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

CdS-POM nanosheet for highly efficient visible-light-driven H₂ evolution

Wen-Xiong Shi,^a Zhi-Yong Liu,^a and Zhi-Ming Zhang,^{*a}

¹Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science &

Engineering, Tianjin University of Technology, Tianjin 300384, China

Table of Contents

Figure S1. XRD patterns of the different POM doped into CdS
Figure S2. FT-IR spectra of the different POM doped into CdS
Figure S3. TEM and HRTEM images of CdS
Figure S4. Calibration curves of Mo elements for ICP-MS
Figure S5. ESI-MS spectrum of PMo ₁₂ 7
Figure S6. The XPS survey spectrum8
Figure S7. Ultraviolet–visible diffuse reflectance spectra
Figure S8. Band-gap calculation of CdS and PMo ₁₂ 10
Figure S9. UPS spectra of CdS and PMo ₁₂ 11
Figure S10. Mott-Schottky diagram of CdS and PMo ₁₂ 12
Figure S11-13. A comparison of the visible-light-driven H ₂ evolution rates13
Figure S14. PXRD patterns of CdS@PMo12-3 before and after the photocatalytic16
Figure S15. FT-IR spectra of CdS@PMo12-3 before and after the photocatalytic17
Figure S16. Proposed possible mechanism schematic18
Table S1. ICP-MS results of CdS@PMo12 19
Table S2. A comparison of the H2-production rates 20
References

Figure S1. XRD patterns of the different POM doped into CdS. (a) XRD patterns of CdS@PW₁₂ composite photocatalysts. (b) XRD patterns of CdS@P₂W₁₈ composite photocatalysts. (c) XRD patterns of CdS@P₂Mo₁₈ composite photocatalysts.

Figure S2. (a) FT-IR spectra of $CdS@PW_{12}$ composite photocatalysts. (b) FT-IR spectra of $CdS@P_2W_{18}$ composite photocatalysts. (c) FT-IR spectra of $CdS@P_2Mo_{18}$ composite photocatalysts.

Figure S3. (a) TEM of CdS and (b-d), HRTEM images of CdS.

Figure S4. Calibration curves of Mo elements for ICP-MS.

Inten. (x1	0,000)														Base Per	ak: 610.400	0/ 59, 538
b. U						610.40	00			1	m/z	617.0000	Abs. In	iten.	0	Rel. Inte	n. 0.00
	1									1	1			1		1	
-								1									1
5. 0-																	
				1	1												i.
4. 5	·																
-								1									1
4.0-	·																
																	÷.
3. 0						1	1					38.4000				1	
2 di																	
3.0												1					i.
2. 5																	
-	1											1					1
2. 0-	· · · · · · · · · · · · · · · · · · ·								·····	·····				·			
3												E.					1
1.5												640.350	0				
												1					÷.
1. 0-					1		1							1			1
0.5							614.3500							ļ			
3												-141					1
0.0												لبازلياب		1			
580.0	585.0	590.0	595.0	600.0	605.0	610.0	615.0	620.0	625.0	630.0	635.0	640.0	64	5.0	650.0	655.0	m/z

Figure S5. ESI-MS spectrum of PMo₁₂.

Figure S6. (a) The XPS survey spectrum of CdS@PMo₁₂-3. (b) The XPS survey spectrum of CdS. (c) The XPS survey spectrum of PMo_{12} .

Figure S7. Ultraviolet–visible diffuse reflectance spectra of CdS, PMo₁₂ and CdS@PMo₁₂.

Figure S8. (a) Band-gap calculation of CdS. (b) Band-gap calculation of PMo₁₂.

Figure S11. A comparison of the visible-light-driven H₂ evolution rates based on CdS, PW₁₂ and CdS@PW₁₂ as photocatalysts ($\lambda > 420$ nm).

Figure S12. A comparison of the visible-light-driven H_2 evolution rates based on CdS, P_2W_{18} and CdS@P₂W₁₈ as photocatalysts ($\lambda > 420$ nm).

Figure S13. A comparison of the visible-light-driven H_2 evolution rates based on CdS, P_2Mo_{18} and CdS@ P_2Mo_{18} as photocatalysts ($\lambda > 420$ nm).

Figure S14. PXRD patterns of CdS@PMo $_{12}$ -3 before and after the photocatalytic H₂ evolution.

Figure S15. FT-IR spectra of CdS@PMo₁₂-3 before and after the photocatalytic H₂ evolution.

Figure S16. Proposed possible mechanism schematic of CdS@PMo₁₂ composite.

Table S1. ICP-MS results of CdS@PMo₁₂.

Compounds	$PMo_{12}(mg)$	Elements		
		Mo (wt%)		
CdS@PMo ₁₂ -1	10	0.7		
CdS@PMo ₁₂ -2	30	1.1		
CdS@PMo ₁₂ -3	50	1.8		
CdS@PMo ₁₂ -4	70	2.7		

Photocatalyst	Amounts of catalyst(mg)	Activity (mmol h ⁻¹ g ⁻¹⁾	Refs
CdS@PMo ₁₂ -3	2	5.7	This Work
CdS-P ₅ W ₃₀	50	1.9	1
Ti ₃ C ₂ T _x /CdS	20	0.8	2
CdS-NiE-350	100	4.3	3
NiS/CdS	30	2.2	4
M-G/CdS	100	2.3	5
Au-Pt-CdS	50	0.8	6
CdS-NRs/NMOF-Ni	50	4.5	7
Ag ₂ S/CdS	50	0.7	8
$MnO_2 @CdS$	5	3.9	9
P ₂ W ₁₅ V ₃ @MIL-101	3	0.9	10
Co-POM	1	2.0	11

Table S2. A comparison of the H_2 -production rates of the POM-based photocatalysts and most CdS-based photocatalysts.

References

1. H. Chen, Y. Cao, R. Wang, Y. Li, M. Liu, L. Zhang and W. You, Enhanced photocatalytic performance in preyssler-type P₅W₃₀-CdS nanohybrids synthesized by l-cystine-mediated hydrothermal assembly, *Int. J. Hydrogen Energy*, 2019, **44**, 13052-13060.

2. Y. Yang, D. Zhang and Q. Xiang, Plasma-modified Ti₃C₂Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. *Nanoscale*, 2019, **11**, 18797-18805.

3. G. Zhao, Y. Sun, W. Zhou, X. Wang, K. Chang, G. Liu, H. Liu, T. Kako and J. Ye, Superior Photocatalytic H₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor, *Adv. Mater.*, 2017, **29**, 1703258.

4. W. Zhang, Y. Wang, Z. Wang, Z. Zhong and R. Xu, Highly efficient and noble metal-free NiS/CdS photocatalysts for H₂ evolution from lactic acid sacrificial solution under visible light, *Chem. Commun.*, 2010, **46**, 7631-7633.

5. M. Liu, F. Li, Z. Sun, L. Ma, L. Xu and Y. Wang, Noble-metal-free photocatalysts MoS₂-graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H₂ evolution, *Chem. Commun.*, 2014, **50**, 11004-11007.

6. L. Ma, K. Chen, F. Nan, J. H. Wang, D. J. Yang, L. Zhou and Q. Q. Wang, Improved Hydrogen Production of Au-Pt-CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer, *Adv. Funct. Mater.*, 2016, **26**, 6076-6083.

7. H. Yang, C. Yang, N. Zhang, K. Mo, Q. Li, K. Lv, J. Fan and L. Wen, Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods, *Appl. Catal., B,* 2021, **285**, 119801.

8. C. Lu, S. Du, Y. Zhao, Q. Wang, K. Ren, C. Li and W. Dou, Efficient visible-light photocatalytic H₂ evolution with heterostructured Ag₂S modified CdS nanowires, *RSC Adv.*, 2021, **11**, 28211-28222.

9. S. Zulfiqar, S. Liu, N. Rahman, H. Tang, S. Shah, X. H. Yu and Q. Q. Liu, Construction of S-scheme MnO₂@CdS heterojunction with coreshell structure as H₂-production photocatalyst, Rare Met., 2021, 40, 2381-2391.

10. W. Sun, B. An, B. Qi, T. Liu, M. Jin and C. Duan, Dual-Excitation Polyoxometalate-Based Frameworks for One-Pot Light-Driven Hydrogen Evolution and Oxidative Dehydrogenation, *ACS Appl. Mater. Interfaces.*, 2018, **10**, 13462-13469.

11. H. Li, S. Yao, H. L. Wu, J. Y. Qu, Z. M. Zhang, T. B. Lu, W. Lin and E. B. Wang, Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction, *Appl. Catal., B*, 2018, **224**, 46-52.