Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Experimental Section

Determination of NH₃: The indophenol blue colorimetric method was used to determine NH₃ concentration in the electrolyte after reduction (the ultimate solution was diluted 20 times, 50 times, 100 times according to the actual situation). Specifically, it is necessary in this process to mix these solutions including 2 mL diluted electrolyte, 1 mL 0.05 M NaClO, 0.2 mL sodium nitroprusside (1 wt%) and 2 mL of 1 M NaOH coloring solution containing 5% salicylic acid and 5% sodium citrate. Relevant UV-vis absorption spectra of mixed solutions were obtained after being placed in darkness for 2h, using the absorbance at 655 nm to identify NH₃ concentration. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0.25, 0.5, 1.0, 2.5, 5.0 ppm in 0.1 M NaOH solution. Decent linear relation of absorbance value with NH₃ concentration is shown in the fitting curve (y =0.21 x – 0.079, R²=0.999).

Determination of N₂H₄: The Watt and Chrisp method is used to estimate N₂H₄ production. In short, it is necessary to mix 5 mL solution required detection and 5 mL color reagent from the mixed solution containing 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL ethanol. The absorbance of the solution was detected at 455 nm after stirring at room temperature for 10 min. Excellent linear relation of absorbance value with N₂H₄ concentration is shown in the fitting curve (y = 0.563x + 0.014, R² = 0.999).

Calculations of NH₃ yield and FE: The NH₃ yield was calculated according to the following equation: $R_{\text{NH3}} = (m_{\text{NH3}})/(t \times S)$, where m_{NH3} signifies the total mass of NH₃, *t* represents the reaction duration, and *S* is the immersed area of the sample. Faradaic efficiency (FE) was calculated according to the equation: FE = $6F \times n_{\text{NH3}}/Q$, where F means the Faraday constant and *Q* is the total quantity of applied electricity.

Fig. S1. SEM images of (a) Co_3O_4 /NiFe LDH-20 and (b) Co_3O_4 /NiFe LDH-60.

Fig. S2. SAED pattern of Co₃O₄/NiFe LDH-40.

Fig. S3. O 1s XPS spectrum of Co₃O₄/NiFe LDH-40.

Fig. S4. (a) UV–vis absorption spectra and (b) corresponding calibration curve for calculation of NH_4^+ concentration.

Fig. S5. (a) UV-vis absorption spectra and (b) corresponding calibration curve for

calculation of N_2H_4 concentration.

Fig. S6. (a) LSV curves of various catalysts, (b) amplified LSV curves of the comparison samples in NO_2^{-1} -containing and NO_2^{-1} -free 0.1 M NaOH (The dotted line represents the condition in NO_2^{-1} -containing 0.1 M NaOH, solid line represents the condition in NO_2^{-1} -free 0.1 M NaOH).

Fig. S7. Chronoamperometry curves of (a) Co₃O₄/NiFe LDH-40 at different applied potentials and (b) Co₃O₄/NF, NiFe LDH/NF, Co₃O₄/NiFe LDH-20, Co₃O₄/NiFe LDH-60 and NF at -0.5 V. (c) UV–vis absorption spectra of NH₃ for Co₃O₄/NF, NiFe LDH/NF, Co₃O₄/NiFe LDH-20, Co₃O₄/NiFe LDH-60 and NF at -0.5 V.

Fig. S8. UV-vis absorption spectra of N₂H₄ for Co₃O₄/NiFe LDH-40 at different

potentials.

Fig. S9. UV–vis absorption spectra of NH_3 of $Co_3O_4/NiFe$ LDH-40 during electrolysis. (The electrolyte from the cycle 1 is diluted 20 times, the electrolyte from the cycle 2 to the cycle 4 is diluted 50 times, and the electrolyte from the cycle 5 is diluted 100 times)

Fig. S10. XRD pattern of Co₃O₄/NiFe LDH-40, Co₃O₄/NiFe LDH-40 after OER and

Co₃O₄/NiFe LDH-40 after NO₂⁻RR

Fig. S11. (a) Co 2p, (b) Ni 2p, (c) Fe 2p and (d) O 1s XPS spectrum of Co₃O₄/NiFe

LDH-40 after NO₂-RR durability test.

ig. S12. (a)TEM, (b-g) corresponding elemental mapping images of Co₃O₄/NiFe LDH-

F

40 after NO₂-RR test.

Fig. S13. Cyclic voltammetry curves of different catalysts tested at various scan rates

60 NiFe LDH/NF Co₃O₄/NF NF Co₃O₄/NiFe LDH-20 50 $j_{\rm ECSA}$ (mA cm⁻²) Co₃O₄/NiFe LDH-60 Co₃O₄/NiFe LDH-40 40 30 1.48 1.50 1.52 1.54 1.58 1.56 1.60 Potential (V vs. RHE)

ranging from 10 to 80 mV $s^{-1}.$

Fig. S14. Polarization curves of different catalysts based on ECSA.

Fig. S15. Polarization curves of different catalysts based on geometric area without *iR*

corrections.

Fig. S16. (a)TEM, (b-g) corresponding elemental mapping images of Co₃O₄/NiFe LDH-

40 after OER test.

Fig. S17. (a) Co 2p, (b) Ni 2p, (c) Fe 2p and (d) O 1s XPS spectrum of Co₃O₄/NiFe

LDH-40 after OER test.

Fig. S18. SEM images of (a) non-core-shell Co_3O_4 /NiFe LDH, (b) non-core-shell Co_3O_4 /NiFe LDH after NO₂-RR and (c)non-core-shell Co_3O_4 /NiFe LDH after OER. (d) LSV curves of the samples in NO₂-containing and NO₂-free 0.1 M NaOH (The dotted line represents the condition in NO₂-containing 0.1 M NaOH, solid line represents the condition in NO₂-free 0.1 M NaOH). (e) i-t curve and (f) UV–vis absorption spectrum of

non-core-shell Co_3O_4 /NiFe LDH at -0.5V. (g) comparison of NO_2 -RR performance in 1 (non-core-shell Co_3O_4 /NiFe LDH), 2 (Co_3O_4 /NiFe LDH-40). (h) OER performance comparison in samples.

Fig. S19. Long-term stability of Co_3O_4 /NiFe LDH-40 at OER||NO₂⁻RR system.

Catalyst	Electrolyte	NH ₃ yield	FE	Potential	Ref.
		(mg h ⁻¹ cm ⁻²)	(%)	(V vs. RHE)	
Co ₃ O ₄ /NiFe LDH-	0.1 M OH ⁻⁺ 0.1	4.27	96.53	-0.5	This
40	M NO ₂ ⁻				work
Pd-doped TiO ₂	1 M LiCl + 0.25	1.12	92.1	-0.7	1
	M LiNO ₃ ⁻				
Ni-NSA-VNi	0.2 M Na2SO4 +	4.011	96.1	-0.54	2
	200 ppm NO_2^-				
Cu3P NA/CF	0.1 M PBS + 0.1	1.626	91.2	-0.5	3
	M NO ₂ ⁻				
CoB nanoarray	0.2 M Na2SO4 +	3.962	95.2	-0.7	4
	400 ppm NO ₂ ⁻				
Ag@NiO/CC	0.1 M OH-+0.1	2.295	75.8	-0.4	5
	M NO ₂ -				
MoFe protein	0.25 M HEPES +	3.978	~100	-0.57 V	6
	0.05 M NO_2^-				
Ni2P nanosheet	0.1 M PBS + 200	2.69	87	-0.3	7
	$ppm NO_2^-$				

Table S1. Comparison of NH₃ yield and FE of Co₃O₄/NiFe LDH-40 with other reported advanced electrocatalysts for nitrate reduction to produce ammonia.

Table S2. Comparison of the OER performance for Co₃O₄/NiFe LDH-40 with other

reported OER electrocatalysts in 1 M alkaline electrolyte.

Catalyst	η ₁₀₀ (mV)	η ₁₀ (mV)	Tafel Slope (mV dec ⁻¹)	Reference
C0 ₃ O ₄ /NiFe LDH-40	280	234	48.4	This work
Co ₃ O ₄ /NF	370	309	95.04	This work
NiFe LDH/NF	310	249	213.08	This work
NiFeRu–LDHs	1	225	31 8	

Li ⁺ - NiFe LDH	224	154	47.9	9
Ni ₃ S ₂ -NiFe LDHs/NF	/	205	35.6	10
B,N-GQDs/NiFe LDH	251	/	34	11
MIM-CoFe LDH	291.3	216.8	58.5	12
CoxFeyO-N	350	304	52.7	13
CoO/CeO ₂	/	291	84	14

REFERENCES:

- Guo Y, Zhang R, Zhang S, Zhao Y, Yang Q, Huang Z, Dong B, Zhi C. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. *Energy Environ Sci.* 2021;14:3938-3944. DOI: 10.1039/d1ee00806d.
- Wang C, Zhou W, Sun Z, Wang Y, Zhang B, Yu Y. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. J Mater Chem A Mater. 2021;9:239-243. DOI: 10.1039/D0TA09590G.
- Liang J, Deng B, Liu Q, Wen G, Liu Q, Li T, Luo Y, Alshehri AA, Alzahrani KA, Ma D, et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. *Green Chem.* 2021;23:5487-5493. DOI: 10.1039/D1GC01614H.
- 4. Hu L, Zhao D, Liu C, Liang Y, Zheng D, Sun S, Li Q, Liu Q, Luo Y, Liao Y, et al. Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. *Inorg Chem Front*. 2022;9:6075-6079. DOI: 10.1039/D2QI01363K.
- Liu Q, Wen G, Zhao D, Xie L, Sun S, Zhang L, Luo Y, Ali Alshehri A, Hamdy MS, Kong Q, et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. *J Colloid Interface Sci.* 2022;623:513-519. DOI: https://doi.org/10.1016/j.jcis.2022.04.173.
- Milton RD, Abdellaoui S, Khadka N, Dean DR, Leech D, Seefeldt LC, Minteer SD. Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. *Energy Environ Sci.* 2016;9:2550-2554. DOI: 10.1039/C6EE01432A.
- Wen G, Liang J, Zhang L, Li T, Liu Q, An X, Shi X, Liu Y, Gao S, Asiri AM, et al. Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. J Colloid Interface Sci. 2022;606:1055-1063. DOI: https://doi.org/10.1016/j.jcis.2021.08.050.
- Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim T, Liu H, Huang L, Luan X, Zhou L, et al. Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. *Nano Lett.* 2020;20:136-144. DOI: 10.1021/acs.nanolett.9b03460.
- 9. Lin X, Cao S, Chen X, Chen H, Wang Z, Liu H, Xu H, Liu S, Wei S, Lu X. Two Birds with One Stone: Contemporaneously Boosting OER Activity and Kinetics for Layered Double Hydroxide Inspired by Photosystem II. *Adv Funct Mater*. 2022;32:2202072. DOI: https://doi.org/10.1002/adfm.202202072.
- 10. Wu S, Liu S, Tan X, Zhang W, Cadien K, Li Z. Ni3S2-embedded NiFe LDH porous nanosheets with abundant heterointerfaces for high-current water electrolysis. *Chem Eng J*. 2022;442:136105. DOI: https://doi.org/10.1016/j.cej.2022.136105.
- Rinawati M, Wang Y, Huang W, Wu Y, Cheng Y, Kurniawan D, Haw S, Chiang W, Su W, Yeh M. Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOFderived bimetallic layered double hydroxide towards oxygen evolution reaction. *Carbon N Y*. 2022;200:437-447. DOI: https://doi.org/10.1016/j.carbon.2022.08.067.
- 12. Hu L, Tian L, Ding X, Wang X, Wang X, Qin Y, Gu W, Shi L, Zhu C. p-d hybridization in CoFe LDH nanoflowers for efficient oxygen evolution electrocatalysis. *Inorg Chem Front.*

2022;9:5296-5304. DOI: 10.1039/D2QI01688E.

- 13. Du Q, Su P, Cao Z, Yang J, Price CAH, Liu J. Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance. *Sustain Mater Technol.* 2021;29:e293. DOI: https://doi.org/10.1016/j.susmat.2021.e00293.
- 14. Liu H, Duan H, Yu J, Qiu C, Yu R, Gao J, Li S, Du X, Si Z, Yang S. Strong Electron Coupling Effect at the CoO/CeO2 Interface Enables Efficient Oxygen Evolution Reaction. *ACS Mater Lett.* 2022;4:2572-2578. DOI: 10.1021/acsmaterialslett.2c00802.