Supporting Information

Modulating Optical Performance by Phase Transition in a Nonlinear

Optical Material β-Li₂RbBi(PO₄)₂

Lei Wu, ^a Ruixin Zhang, ^b Qun Jing, ^{*b} Hongyu Huang, ^a Xianmeng He, ^a Zhongchang Wang, ^{*c} Zhaohui

Chen*^a

 ^a Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region,School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
 ^b Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi 830017, China
 ^c International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal

*To whom correspondence should be addressed. E-mails: chenzhaohui@xju.edu.cn (Z.H.C.); qunjing@xju.edu.cn (Q.J.); zhongchang.wang@inl.int (Z.C.W.)

Contents

Table S1. Crystal data and structure refinement for the β -Li₂RbBi(PO₄)₂

Table S2. Atomic coordinates, equivalent isotropic displacement parameters for the β -Li₂RbBi(PO₄)₂

Table S3. Selected bond distances and angles for the β -Li₂RbBi(PO₄)₂

Table S4. Anisotropic displacement parameters of the β -Li₂RbBi(PO₄)₂

Table S5. Calculated bond valence values for the β -Li₂RbBi(PO₄)₂

Table S6. SHG responses of all the Bi-based phosphates

Figure S1. XRD patterns of the Li₂RbBi(PO₄)₂;

Figure S2. Atomic coordination environment of Bi in the β -Li₂RbBi(PO₄)₂

Figure S3. The IR and UV-Vis-NIR diffuse reflectance spectra for the β -Li₂RbBi(PO₄)₂

Figure S4. TG-DTA analysis of the β -Li₂RbBi(PO₄)₂

Empirical formula	Li ₂ RbBi(PO ₄) ₂		
Formula weight	498.27		
Temperature/K	273(2)		
Wavelength/ Å	0.71073		
Crystal system	Monoclinic		
Space group	P2 ₁		
a/Å	8.1067(3)		
b/Å	5.0152(2)		
<i>c</i> /Å	18.6456(7)		
<i>α</i> /°	90.00		
6/°	91.0760(10)		
γ/°	90.00		
Volume/Å ³	757.94(5)		
Z, Calculated density/ (g/cm ³)	4, 4.376		
Absorption coefficient /(mm ⁻¹)	30.074		
F(000)	880.0		
Crystal size/mm ³	0.17 × 0.058 × 0.025		
20 range for data collection/°	6.56 to 52		
Index ranges	-9 ≤ h ≤ 9, -6 ≤ k ≤ 6, -22 ≤ l ≤ 22		
Reflections collected / unique	10992 / 2961 [R(int) = 0.0376]		
Completeness to theta = 26.00	99.6 %		
Absorption correction	30.074		
Refinement method	Full-matrix least-squares on F ^{^2}		
Data/restraints/parameters	2961/73/272		
Goodness-of-fit on F ²	1.061		
Final <i>R</i> indexes [I>=2σ (I)]	$R_1 = 0.0353$, $wR_2 = 0.0962$		
Final R indexes [all data]	$R_1 = 0.0374$, $wR_2 = 0.0974$		
Extinction coefficient	0.00488(14)		
Largest diff. peak/hole / e Å ⁻³	2.62/-3.04		

Table S1. Crystal data and structure refinements for the β -Li₂RbBi(PO₄)₂.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|$ and $wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atom	x	у	Ζ	U(eq)
Li(1)	4722(15)	8390(30)	5873(7)	7(1)
Li(2)	11585(16)	13380(30)	7820(7)	10(1)
Li(3)	14532(16)	13440(30)	6938(7)	9(1)
Li(4)	6660(20)	3220(40)	9668(9)	27(4)
Rb(1)	4867(1)	8216(2)	8565(1)	10(1)
Rb(2)	11823(1)	3480(2)	5646(1)	10(1)
Bi(1)	8156(1)	7678(1)	6806(1)	8(1)
Bi(2)	-17(1)	8073(1)	8930(1)	25(1)
P(1)	6876(2)	3346(4)	5680(1)	6(1)
P(2)	7747(3)	3418(4)	8056(1)	10(1)
P(3)	2625(3)	3240(5)	9516(1)	21(1)
P(4)	12206(2)	8415(4)	7078(1)	7(1)
O(1)	13128(8)	8701(13)	5115(3)	15(2)
O(2)	9259(8)	4796(14)	7696(4)	18(2)
O(3)	-2254(10)	4507(16)	8816(4)	30(1)
O(4)	2376(10)	10257(17)	9569(5)	32(2)
O(5)	2594(8)	5484(12)	7137(3)	12(2)
O(6)	7968(10)	461(15)	8062(5)	35(2)
O(7)	6208(9)	4227(16)	7640(4)	27(2)
O(8)	5445(8)	4757(13)	6038(3)	12(1)
O(9)	8521(8)	4628(13)	6000(4)	15(2)
O(10)	1861(11)	4370(17)	8832(5)	38(1)
O(11)	11802(8)	9567(13)	7819(3)	14(2)
O(12)	10655(8)	8823(14)	6587(3)	18(2)
O(13)	6919(7)	300(12)	5858(3)	10(1)
O(14)	13620(8)	9917(12)	6739(3)	11(1)
O(15A)	4120(20)	4550(40)	9816(10)	40(1)
O(15B)	4520(20)	3340(40)	9276(10)	48(1)
O(16A)	2190(20)	4600(30)	10187(9)	30(1)
O(16B)	1000(30)	4760(40)	9974(12)	55(1)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for the β -Li₂RbBi(PO₄)₂.

 U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

	(), -		
Li(1)-O(1) ^{#1}	1.903(14)	P(1)-O(1) ^{#13}	1.492(6)
Li(1)-O(8)	1.938(15)	P(1)-O(8)	1.525(7)
Li(1)-O(14) ^{#1}	2.012(14)	P(1)-O(13)	1.564(6)
Li(1)-O(13) ^{#2}	2.023(14)	P(1)-O(9)	1.587(7)
Li(2)-O(5) ^{#5}	1.855(15)	P(2)-O(6)	1.494(8)
Li(2)-O(11)	1.920(15)	P(2)-O(7)	1.513(7)
Li(2)-O(10) ^{#5}	1.959(16)	P(2)-O(3) ^{#6}	1.518(8)
Li(2)-O(2) ^{#2}	2.024(15)	P(2)-O(2)	1.570(7)
Li(3)-O(7) ^{#5}	1.909(15)	P(3)-O(16A)	1.475(16)
Li(3)-O(5) ^{#5}	1.919(15)	P(3)-O(15A)	1.482(18)
Li(3)-O(14)	1.948(15)	P(3)-O(4) ^{#9}	1.513(9)
Li(3)-O(8)#5	1.961(15)	P(3)-O(10)	1.517(9)
Li(4)-O(15B)	1.86(2)	P(3)-O(15B)	1.612(18)
Li(4)-O(4)#7	1.907(19)	P(3)-O(16B)	1.76(2)
Li(4)-O(3)#6	1.943(19)	P(4)-O(5)#6	1.507(6)
Li(4)-O(16A)#7	2.06(2)	P(4)-O(14)	1.519(7)
Li(4)-O(15A)	2.18(3)	P(4)-O(11)	1.539(6)
Li(4)-O(15A)#7	2.18(3)	P(4)-O(12)	1.555(6)
Li(4)-O(16B)#7	2.65(3)	O(1)#13-P(1)-O(8)	113.1(4)
Rb(1)-O(15B)	2.80(2)	O(1)#13-P(1)-O(13)	109.1(4)
Rb(1)-O(7)	2.869(8)	O(8)-P(1)-O(13)	112.0(4)
Rb(1)-O(15B)#2	2.91(2)	O(1)#13-P(1)-O(9)	108.1(4)
Rb(1)-O(11)#1	2.905(7)	O(8)-P(1)-O(9)	106.7(4)
Rb(1)-O(6)#2	2.925(9)	O(13)-P(1)-O(9)	107.5(3)
Rb(1)-O(4)	2.962(8)	O(6)-P(2)-O(7)	111.6(5)
Rb(1)-O(3)#6	3.014(8)	O(6)-P(2)-O(3)#6	110.6(5)
Rb(1)-O(15A)	3.039(19)	O(7)-P(2)-O(3)#6	111.6(4)
Rb(1)-O(10)	3.155(9)	O(6)-P(2)-O(2)	110.2(4)
Rb(1)-O(15A)#8	3.184(18)	O(7)-P(2)-O(2)	107.8(4)
Rb(1)-O(16A)#8	3.373(16)	O(3)#6-P(2)-O(2)	104.8(4)
Rb(2)-O(1)#9	2.807(6)	O(16A)-P(3)-O(15A)	71.5(10)

Table S3. Selected bond distances (Å) and angles (deg) for the β -Li₂RbBi(PO₄)₂.

Rb(2)-O(9)	2.828(6)	O(16A)-P(3)-O(4)#9	111.5(7)
Rb(2)-O(1)	2.999(6)	O(15A)-P(3)-O(4)#9	121.5(8)
Rb(2)-O(5)#6	3.012(6)	O(16A)-P(3)-O(10)	116.2(7)
Rb(2)-O(14)#9	3.060(6)	O(15A)-P(3)-O(10)	118.1(8)
Rb(2)-O(8)#6	3.080(6)	O(4)#9-P(3)-O(10)	111.8(5)
Rb(2)-O(12)#9	3.081(7)	O(16A)-P(3)-O(15B)	117.7(9)
Rb(2)-O(13)#10	3.137(6)	O(15A)-P(3)-O(15B)	46.3(10)
Rb(2)-O(12)	3.350(7)	O(4)#9-P(3)-O(15B)	100.3(8)
Bi(1)-O(12)	2.153(6)	O(10)-P(3)-O(15B)	97.6(7)
Bi(1)-O(9)	2.168(7)	O(16A)-P(3)-O(16B)	36.2(9)
Bi(1)-O(2)	2.364(7)	O(15A)-P(3)-O(16B)	103.9(10)
Bi(1)-O(13)#2	2.406(6)	O(4)#9-P(3)-O(16B)	107.2(8)
Bi(1)-O(6)#2	2.734(9)	O(10)-P(3)-O(16B)	87.0(8)
Bi(2)-O(16B)#12	2.36(2)	O(15B)-P(3)-O(16B)	148.1(11)
Bi(2)-O(10)	2.411(9)	O(5)#6-P(4)-O(14)	110.9(4)
Bi(2)-O(4)	2.509(8)	O(5)#6-P(4)-O(11)	110.4(4)
Bi(2)-O(3)	2.553(8)	O(14)-P(4)-O(11)	111.2(4)
Bi(2)-O(16A)#12	2.550(16)	O(5)#6-P(4)-O(12)	109.7(4)
Bi(2)-O(6)#4	2.573(9)	O(14)-P(4)-O(12)	107.3(4)
Bi(2)-O(11)#1	2.673(6)	O(11)-P(4)-O(12)	107.2(4)
Bi(2)-O(16B)	2.68(2)		

Symmetry transformations used to generate equivalent atoms:

#1	x-1, y, z	#2	x, y+1, z	#3	x-1, y-1, z
#4	x-1, y+1, z	#5	x+1, y+1, z	#6	x+1, y, z
#7	-x+1, y-1/2, -z+2	#8	-x+1, y+1/2, -z+2	#9	x, y-1, z
#10	-x+2, y+1/2, -z+1	#11	x+1, y-1, z	#12	-x, y+1/2, -z+2
#13	-x+2, y-1/2, -z+1	#14	-х, у-1/2, -z+2		

				- / -		(= 4/2
	U11	U22	U33	U23	U13	U12
Li(1)	7(2)	6(2)	7(2)	0(1)	0(1)	0(1)
Li(2)	10(2)	10(2)	10(2)	0(1)	0(1)	0(1)
Li(3)	9(2)	9(2)	9(2)	0(1)	0(1)	0(1)
Li(4)	34(8)	21(9)	24(8)	6(8)	-14(7)	-6(8)
Rb(1)	6(1)	12(1)	12(1)	-1(1)	3(1)	0(1)
Rb(2)	11(1)	10(1)	10(1)	0(1)	3(1)	2(1)
Bi(1)	9(1)	9(1)	6(1)	0(1)	-1(1)	1(1)
Bi(2)	25(1)	24(1)	26(1)	-3(1)	-4(1)	1(1)
P(1)	8(1)	5(1)	5(1)	1(1)	-1(1)	-2(1)
P(2)	10(1)	10(1)	11(1)	4(1)	-1(1)	0(1)
P(3)	25(1)	25(1)	12(1)	2(1)	-4(1)	-16(1)
P(4)	7(1)	5(1)	10(1)	-3(1)	2(1)	-2(1)
O(1)	18(3)	18(3)	9(3)	-8(2)	-5(2)	-3(3)
O(2)	17(3)	22(3)	14(3)	10(3)	-3(3)	-5(3)
O(3)	31(1)	30(1)	28(2)	2(1)	1(1)	1(1)
O(4)	27(4)	38(5)	32(4)	7(4)	-3(4)	-3(4)
O(5)	8(3)	9(3)	17(3)	2(3)	-4(3)	3(2)
O(6)	32(4)	19(4)	53(5)	14(4)	7(4)	2(3)
O(7)	16(3)	39(4)	27(4)	-10(3)	-8(3)	4(3)
O(8)	13(1)	12(1)	13(1)	1(1)	0(1)	2(1)
O(9)	13(1)	11(3)	19(3)	-4(3)	-7(3)	-7(3)
O(10)	40(1)	38(2)	37(2)	0(1)	-1(1)	1(1)
O(11)	21(3)	15(3)	7(3)	-4(2)	6(3)	4(3)
O(12)	13(3)	28(4)	14(3)	8(3)	-4(3)	-3(3)
O(13)	10(1)	10(1)	10(1)	1(1)	-1(1)	0(1)
O(14)	11(1)	10(1)	11(1)	0(1)	0(1)	-1(1)
O(15A)	40(2)	40(2)	40(2)	1(1)	0(1)	0(1)
O(15B)	48(2)	48(2)	49(2)	0(1)	1(1)	0(1)
O(16A)	30(2)	30(2)	29(2)	-1(1)	1(1)	0(1)
O(16B)	55(2)	55(2)	55(2)	0(1)	2(1)	0(1)

Table S4. Anisotropic displacement parameters ($A^2 \times 10^3$) for the β -Li₂RbBi(PO₄)₂.

β-Li ₂ RbBi(PO ₄) ₂								
Atom	Li(1)	Li(2)	Li(3)	Li(4)	Rb(1)	Rb(2)	Bi(1)	Bi(2)
∑ Cations	1.04	1.13	1.13	1.09	1.26	1.19	2.73	2.56
Atom	P(1)	P(2)	P(3)	P(4)	O(1)	O(2)	O(3)	O(4)
∑ Cations	4.76	4.99	4.77	4.90	2.02	1.80	1.95	2.05
Atom	O(5)	O(6)	O(7)	O(8)	O(9)	O(10)	O(11)	O(12)
∑ Cations	2.08	1.96	1.77	1.89	2.07	2.04	1.87	2.15
Atom	O(13)	O(14)	O(15)	O(16)				
∑ Cations	1.86	1.87	1.88	1.79				

Table S5. Bond valence analysis of the β -Li₂RbBi(PO₄)₂.

materials	Group	SHG(× KDP)	ref
Li ₂ KBi(PO ₄) ₂	P2 ₁	5	1
β-Li ₂ RbBi(PO ₄) ₂	P2 ₁	5.2	this work
α -Li ₂ RbBi(PO ₄) ₂	С2	3.1	1
Li ₂ CsBi(PO ₄) ₂	С2	2.5	1
CsBi(P ₄ O ₁₂)	l ⁴ 3d	4.2	2
K_3 SrBi(P ₂ O ₇) ₂	P2 ₁	4	3
$Bi_{32}Cd_{3}P_{10}O_{76}$	С2	4	4
Cd ₃ Bi(PO ₄) ₃	l ⁴ 3d	3.8	5
Pb ₃ Bi(PO ₄) ₃	l ⁴ 3d	3	5
Sr ₃ Bi(PO ₄) ₃	l ⁴ 3d	2.85	5
Rb ₃ PbBi(P ₂ O ₇) ₂	P2 ₁	2.8	6
$Rb_3BaBi(P_2O_7)_2$	P2 ₁	2.5	7
Bi ₆ ZnO ₇ (PO ₄) ₂	12	2.5	8
$Rb_3SrBi(P_2O_7)_2$	P2 ₁	2.1	3
Cs ₃ PbBi(P ₂ O ₇) ₂	P2 ₁ 2 ₁ 2 ₁	1.1	6
Cs ₃ BaBi(P ₂ O ₇) ₂	P212121	0.8	7
RbPbBi ₂ (PO ₄₎₃	P3121	0.7	9
Ca ₃ Bi(PO ₄) ₃	l ⁴ 3d	0.64	5
Ba ₃ Bi(PO ₄) ₃	l ⁴ 3d	0.5	10
K ₆ Bi ₁₃ (PO ₄) ₁₅	С2	weak	11

 Table S6. SHG response of all the Bi-based phosphates.

Figure S1. XRD patterns of β -Li₂RbBi(PO₄)_{2.} (a) Experimental and calculated XRD patterns of the β -Li₂RbBi(PO₄)₂. (b) XRD patterns of the β -Li₂RbBi(PO₄)₂ before and after melting. (c) XRD phase analysis of the sintered samples at different temperatures.

Figure S2. Coordinated environment of Bi atoms in the β -Li₂RbBi(PO₄)₂.

Figure S3. (a,b) IR (a) and UV–Vis–NIR (b) diffuse reflectance spectra of the β -Li₂RbBi(PO₄)₂.

Figure S4. TG-DTA analysis of the β -Li₂RbBi(PO₄)₂.

References

1. M. Wen, C. Hu, H. Wu, Z. Yang, H. H. Yu and S. Pan, Three non-centrosymmetric bismuth phosphates, $Li_2ABi(PO_4)_2(A = K, Rb, and Cs)$: Effects of Cations on the Crystal Structure and SHG Response, *Inorganic Chemistry Frontiers*, 2020, **7**, 3364-3370.

2. Y. Lian, T. Yu, L. Xiong, L. Wu and L. Chen, Cyclophosphate $MBi(P_4O_{12})$ (M = Cs, Rb): Structure Change Giving Rise to Property Enhancement, *Crystal Growth & Design*, 2020, **20**, 6205-6210.

3. S. Liu, B. Zhang, H. Wu, H. Yu, Z. Hu, J. Wang and Y. Wu, Ultraviolet Nonlinear Optical Crystals A_3 SrBi(P_2O_7)₂(A = K, Rb) with Large Second Harmonic Generation Responses, *Inorganic Chemistry Frontiers*, 2021, **8**, 2061-2067.

4. J. Wang, B. Xiong, H. Wu, H. Yu, Z. Hu, J. Wang and Y. Wu, Bi₃₂Cd₃P₁₀O₇₆: A New Congruently Melting Nonlinear Optical Crystal with a Large SHG Response and a Wide Transparent Region, *Inorganic Chemistry Frontiers*, 2021, **8**, 344-351.

5. P. P. Sahoo and T. N. Guru Row, Crystal Chemistry of the Noncentrosymmetric Eulytites: $A_3Bi(XO_4)_3$ (X = V, A = Pb; X = P, A = Ca, Cd, Sr, Pb), *Inorganic Chemistry*, 2010, **49**, 10013-10021.

6. X. Lu, Z. Chen, X. Shi, Q. Jing and M.-H. Lee, Two Pyrophosphates with Large Birefringences and Second-Harmonic Responses as Ultraviolet Nonlinear Optical Materials, *Angewandte Chemie International Edition*, 2020, **59**, 17648-17656.

7. L. Qi, Z. Chen, X. Shi, X. Zhang, Q. Jing, N. Li, Z. Jiang, B. Zhang and M.-H. Lee, $A_3BBi(P_2O_7)_2$ (A = Rb, Cs; B = Pb, Ba): Isovalent Cation Substitution to Sustain Large Second-Harmonic Generation Responses, *Chemistry of Materials*, 2020, **32**, 8713-8723.

J. Olchowka, M. Colmont, A. Aliev, T. T. Tran, P. S. Halasyamani, H. Hagemann and
 Mentré, Original Oxo-centered Bismuth Oxo-arsenates; Critical Effect of PO₄ for
 AsO₄ Substitution, *CrystEngComm*, 2017, **19**, 936-945.

9. M. Wen, H. Wu, Z. Yang, X. Wu and S. Pan, An Alkali Metal Phosphate $RbPbBi_2(PO_4)_3$ with Three Kinds of Disorder: the Effect of Isolated Soft Cation Units on the Crystal Structure, *Inorganic Chemistry Frontiers*, 2019, **6**, 2050-2054.

10. W. Zhang, X. Lin, H. Zhang, J. Wang, C. Lin, Z. He and W. Cheng, Lone electron-pair enhancement of SHG responses in Eulytite-type Compounds: $AII_3MIII(PO_4)_3$ (A = Pb, M = Bi; A = Ba, M = Bi, La), *Dalton Transactions*, 2010, **39**, 1546-1551.

11. R. Liu, H. Wu, H. Yu, Z. Hu, J. Wang and Y. Wu, $K_6Bi_{13}(PO_4)_{15}$, $K_5Bi(P_2O_7)_2$, $A_5Bi_5(PO_4)_4(P_2O_7)_2$ (A=K, Rb): New Bismuth Phosphates with Different Condensed Phosphate groups, *Journal of Alloys and Compounds*, 2022, **896**, 163066.