Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

## **Supporting Information**

## Gd-doped diamond synthesized by Gd@C<sub>82</sub> under high pressure and high temperature

Shuhang Liu, <sup>a,b</sup> Jun Han,<sup>b,d</sup> RongLi Cui, <sup>c</sup> Xin Yang,<sup>b</sup> Yunfan Fei,<sup>b</sup> Xingyu Tang,<sup>b</sup> Yida Wang,<sup>b</sup> Yajie Wang,<sup>b</sup> Yongjin Chen,<sup>b</sup> Jiajia Feng,<sup>b</sup> Haiyan Zheng,<sup>b</sup> Kuo Li, <sup>\*b</sup> and Xiaoyang Liu<sup>\*a</sup>

<sup>a</sup>State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

<sup>b</sup>Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, China.

<sup>c</sup>Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China.

<sup>d</sup>Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

Corresponding Author:

\*Email: liuxy@jlu.edu.cn

\*Email: likuo@hpstar.ac.cn



**Figure. S1.** (a)XRD of the polycrystalline  $Gd@C_{82}$  raw material at ambient pressure. (b) We constructed the crystal structure of  $Gd@C_{82}$  with a monoclinic lattice with a =15.83 Å b =11.15 Å c

=10.50 Å , beta=101.83  $^{\circ}$  and a P2<sub>1</sub> space group at ambient conditions, referring the literature



**Figure. S2.** The standard palladium in the sample cavity and its M-H curve. the magnetic moment calibrations for MPM3 after every cool down based on the formula:  $\mu = \chi \cdot H \cdot m$ , where  $\mu$  is the magnetic moment of the sample,  $\chi$  is the mass susceptibility of palladium at 298 K (5.25×10<sup>-6</sup> emu/Oe-g), H is the magnetic field applied, and m is the mass of the palladium sample



Figure. S3. peak move of Raman spectra (a) 0-1100cm<sup>-1</sup> (b) 1400-1700cm<sup>-1</sup>



**Figure. S4.** The images of typical doped diamond sample (a) 15 GPa 1800 °C. (b)22 GPa 1800 °C. (c)22 GPa 2000 °C. (d)22 GPa 2100 °C.



**Figure. S5.** Raman spectra of samples recovered from different pressure and different temperature (a) 488 nm laser and (b) 532 nm laser.



**Figure. S6.** HRTEM and selected area electron diffraction images of the Gd-doped diamond recovered from 15 GPa and 1800 °C.



**Figure. S7.** (a) High angle annular dark-field scanning transmission electron microscopy STEM image of  $Gd@C_{82}$ . (b) Distribution of Gadolinium element of figure a obtained by EDS elemental mapping. (c) Distribution of carbon element of figure a.



Figure. S8. M-T curve of raw material  $Gd@C_{82}$ .