Supporting Information

Amino-Bridged Attapulgite-Perovskite Nanocomposites: The Role of Bridged Linkage to Optical Property and Stability

Lei Qiu,^{a,b,c} Mengyu Guan,^a Wei Wang,^a Maxim S. Molokeev,^d Sergey P. Polyutov,^d Zhigao Dai,^{*,a,c} Guogang Li^{*,a,b}

^a Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China.

^b Zhejiang Institute, China University of Geosciences, Hangzhou 311305, P. R. China.
^c Shenzhen Institute, China University of Geosciences, Shenzhen, 518052, P. R. China.
^d International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russia.
E-mail: ggli@cug.edu.cn; daizhigao@cug.edu.cn

Results and Discussion

Figure S1 (a) SEM image of pristine ATP NRs. The (b) vertical and (c) lateral size distribution of pristine ATP NRs.

Figure S2 XRD patterns of ATP, ATP- A_{C6} and ATP- A_{C8} .

Figure S3 XRD patterns of ATP@CsPbBr₃, ATP-A_{C6}@CsPbBr₃ and ATP-A_{C8}@CsPbBr₃ nanocomposites.

Figure S4 (a) TEM image and (b) size distribution of pure CsPbBr₃ NCs.

Figure S5 The FWHM values of XRD diffraction peak at $2\theta = 21.57^{\circ}$ with different dosage of APTMS.

Figure S6 PL spectra of ATP@CsPbBr₃ nanocomposite during the (a) heating and (b) cooling processes. PL spectra of ATP-A_{C6}@CsPbBr₃ nanocomposite during the (c) heating and (d) cooling processes.

Figure S7 PL spectra of ATP- A_{C6} @CsPbBr₃ and ATP@CsPbBr₃ nanocomposites under continuous exposure of UV light.

	1				
Samples	A_1	τ_{1}/ns	A_2	τ_2/ns	$\tau_{avg}\!/\!ns$
ATP@CsPbBr ₃	590.87	10.99	455.78	34.60	27.7
ATP-A _{C6} @CsPbBr ₃	915.02	8.71	320.42	63.21	47.8
ATP-A _{C8} @CsPbBr ₃	778.91	11.74	292.65	57.62	41.5

Table S1 PL decay characteristics of ATP@CsPbBr3, ATP-A
C6@CsPbBr3 and ATP-A
C6@CsPbBr3 nanocomposites.

Table S2 Performance parameters of LED device fabricated by ATP-A_{C6}@CsPbBr₃ nanocomposite and pure CsPbBr₃ NCs.

I	-				
Green source	luminous efficiency	CRI	CIE x	CIE y	CCT
	(lm/W)				(K)
ATP-A _{C6} @CsPbBr ₃	38	78	0.37	0.36	3981
CsPbBr ₃	34	54	0.30	0.34	6967