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1. Experimental details

1.1 General Methods

All chemicals and solvents used were of reagent grade and were used without additional purifications.
NMR spectra were recorded in CDCl; and DMSO-ds on Bruker AV-300, AV-400 or AV-600 at 298 K.
Chemical shifts refer to the tetramethylsilane (TMS) internal standard.

IR spectra were recorded using a Perkin-Elmer Spectrum Two spectrometer.

Thermogravimetric experiments were performed using Perkin Elmer Simultaneous Thermal Analyzer
(STA) 6000.

In-situ Raman monitoring was performed using a modular Raman system made of OceanOptics
Maya2000Pro spectrometer, PD-LD (now Necsel) BlueBox Raman laser with the 785 nm excitation
wavelength, and coupled with the B& W-Tek fibre optic Raman BAC102 probe that was approached to
the bottom of the reaction PMMA jar. The setup and the analysis (baseline subtraction, and PMMA
jar subtraction) were adopted from elsewhere.! Raman spectra were cropped in range around 900 —
1700 cm™ and normalized using L1 norm.

High-resolution mass spectra were acquired on an Agilent 6550 Series Accurate-Mass Quadrupole
Time-of-Flight (Q-TOF). The electrospray ionization mass spectrometry (ESI-MS) analysis was
performed in a positive-ion mode, ranging from m/z 100 to 1500. The capillary potential was 3500V,
the fragmentor voltage was 50 V, the drying gas flow was 11 L min™, and the temperature was 200 °C.
The sheath gas flow was 14 L min?, and the temperature was 250 °C. Nitrogen was used as a drying
and sheath gas. Solution of the sample in MeCN-H,0 (v/v 1:1) was introduced directly via an Agilent
1290 Infinity Il UHPLC equipped with Zorbax Eclipse Plus C18, 3.0 x 50 mm, 1.8 um column, column
temperature 40 °C, elution using a gradient of two mobile phases: 0.1 % HCOOH in water (A) and 0.1
% HCOOH in MeCN (B), at flow rate 0.3 mL min~'. Apart from these standard conditions, searching for
the better conditions for the analysis, MeOH instead of MeCN in the mobile phase) was used for 8°.

1.2 Milling reactions

Experiments were performed using an IST500 mixer mill operating at 30 Hz with a built-in fan. To
ensure data consistency, the reported experiments with each precursor were performed sequentially
under analogous conditions and at an ambient temperature of 22+2 °C. Reactions were performed in
14 mL poly(methylmethacrylate) (PMMA) transparent jars that allowed for in situ Raman monitoring.
One zirconium(1V) oxide (ZrO2, 12 mm, 4.5 g) milling ball was used. Reactions were performed using
approximately 225 mg of the reaction mixture. Reactions with L-alanine were performed using the
same experimental setup as analogous reactions with L-cysteine.

1.3 Synthesis of 4-chlororazobenzene (2)

NH, NO o
. AcOH N Q/
r.t,24h Ej N
Cl



Compound 2 was prepared by Mill's coupling reaction of nitrosobenzene with p-substituted aniline.?
1.0 g (9.34 mmol) of nitrosobenzene was dissolved in 50 ml concentrated acetic acid. 1.2 g (9.34
mmol,) of p-chloroaniline was added to the solution and stirred for 24 h at room temperature. The
solution was then neutralized with a saturated solution of NaHCO3, resulting in precipitation of the
product, which was then filtered under reduced pressure, washed with distilled water, and dried in
air. The product was recrystallized from methanol, filtered and dried under reduced pressure. (1.4 g,
68 % isolated). Characterization data are consistent with previously published.?

'H NMR (CDCls, 600 MHz, &/ppm): 7.92 (dd, J = 8.1 Hz, 2H), 7.88 (d, J = 8.9 Hz, 2H), 7.51-7.46 (m, 5H).

1.4 Synthesis of the monocyclopalladated dimeric complexes M1-Cl - M3-Cl

R’ R?

R2
R2
N >
Ney &,Q/C.\/\\N Q/\/N
MeOH, r. t. N\/Pd\C|/Pd N / ~c \©
°N

a-isomer B-isomer
M1-Cl: R, =R, =H
M2-Cl: R1 = H, R2 =Cl
M3-CI: R1 = H, R2 = OCH3

+

The monocyclopalladated dimeric complexes M1-Cl — M3-Cl were prepared in MeOH according to a
known procedure.* A mixture of 400.0 mg PdCl, (2.26 mmol) and the corresponding azobenzene was
stirred for 24 h in 50 mL MeOH at room temperature. The resulting precipitate was filtered and dried
under vacuum. The crude product was recrystallized from DMF, filtered, washed with Et,0, and dried
under vacuum.

[(CeHsN=NCeHs)Pd(p-Cl)l. (M1-Cl). Following the general
procedure, the title compound was obtained as an orange solid
(394.3 mg, 54 % isolated). Characterization data are consistent

N
Pd/CI\ ¥ SN with those previously published.*
No # \CI/Pd 1H NMR (DMSO-ds, 300 MHz, &/ppm): 7.94 (dd, J = 7.8 Hz, 1H), 7.72
N (dd, J = 7.7 Hz, 1H), 7.47-7.63 (m, 5H), 7.28 (d, J = 7.4 Hz, 1H), 7.21

(dt,J = 7.2 Hz, 1H).
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[4-CI-CsHaN=NCsH4)Pd(p-Cl)]. (M2-Cl). Following the general
procedure, the title compound was obtained as an orange solid of
alfa and beta isomers (630.3 mg, 78 % isolated, a: f =3 : 1).
a-isomer: 'H NMR (DMSO-ds, 600 MHz, &/ppm): 7.97 (dd, J = 7.8
Hz, 1H), 7.84 (d, J = 8.9 Hz, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.62 (d, J =
8.8 Hz, 2H), 7.29 (t,J = 7.44 Hz, 1H), 7.24 (t, ) = 7.48 Hz, 1H).

[4-Cl-CsHsN=NC¢Hs)Pd(p-Cl)]> (M2-Cl).

B-isomer: *H NMR (DMSO-ds, 600 MHz, &/ppm): 7.98 (ovp.), 7.90
(t,J=8.3Hz, 1H),7.79 (d,J = 7.1, 1H). 7.67 (d, J = 7.5 Hz, 1H), 7.59-
7.53 (m), 7.37 (dd, J = 7.9 Hz, 1H).

[(4-OMe-CsH3N=NCsHs)Pd(p-Cl)]. (M3-Cl). Following the general
procedure, the title compound was obtained as an orange solid of
alfa and beta isomers (622.4 mg, 78 % isolated, o : f = 1:1.2).
a-isomer: *H NMR (DMSO-ds, 600 MHz, &/ppm): 7.84 (d, J=9.2 Hz,
2H), 7.52-7.49 (ovp.), 7.26 (t,/=7.8 Hz, 1H), 7.17 (t,J = 7.9 Hz, 1H),
7.07 (d,J =9.1 Hz, 2H), 3.86 (s, 3H).

[(4-OMe-CsHaN=NCsH4)Pd(p-Cl)]. (M3-Cl).

B-isomer: *H NMR (DMSO-dg, 600 MHz, §/ppm): 7.84 (d, J = 8.2 Hz,
1H), 7.72-7.70 (m, 3H), 7.51-7.49 (ovp.), 7.23 -6.85 (ovp.), 6.85 (d,
J=8.1Hz, 1H), 3.85 (s, 3H).



1.4 Synthesis of the monocyclopalladated monomeric complexes M4-Cl and M5-CI

R1 R1 R‘1
/CI
PdCl,(MeCN oM -
e

N [PdClx( 2l NG | _DMF | NQN/ \o

N MeCN, r. . N—’FT’d_C' rt. §

~
NCMe T
R2 RZ R2
adduct M4-Cl: Ry = N(CH3),, Ry = H

M5-CI: R1 = N(CH3)2’ R2 =Cl

Monocyclopalladated monomeric complexes M4-Cl and M5-Cl were prepared by a recently developed
method.®> 235.0 mg (0.90 mmol) [PdCl;(MeCN),] was dissolved in 30 mL acetonitrile at room
temperature. One equivalent of the substituted azobenzene was added and stirred for 24 h at room

temperature. The resulting precipitate was filtered and dried in air. It was then dissolved in 10 mL of

DMF. After 7-8 days, the crystalline product was filtered and dried under vacuum.

[PACI(CsHsN=NCgHsNMe;)(DMF)] (M4-Cl). the
procedure, the titled compound was obtained as a red crystalline solid
(201.6 mg, 51 % isolated). Characterization data are consistent with those

Following general

previously published.®

4 NMR (DMSO-ds, 400 MHz, &/ppm): 7.95 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H),
7.42 (t,J = 7.4 Hz, 2H), 7.35 (t,J = 7.1 Hz, 1H), 7.01 (s, br, 1H), 6.57 (d, J = 8.7
Hz, 1H), 3.12 (s, 6H), 2.89 (s, 3H), 2.73 (s, 3H).

[PACI(CICsHsN=NCsH3NMe,)(DMF)] (M5-CI). the
procedure, the titled compound was obtained as a red crystalline solid
(243.0 mg, 57 % isolated). Characterization data are consistent with those
previously published.®

H NMR (DMSO-ds, 600 MHz, &/ppm): 7.95 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H),
7.64 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.1 Hz, 1H), 7.02 (s, br, 1H), 6.59 (d, J =
8.2 Hz, 1H), 3.14 (s, 6H), 2.89 (s, 3H), 2.73 (s, 3H).

Following general



1.5 Synthesis of the dicyclopalladated monomeric complexes D1-Cl - D5-CI

R4

N Y pycl,
N 2) DMF
Ry

R1
o D1-Cl: R, = H, R, = H
Pd D2-Cl: R, = H, R, = Cl
Ny /N D3-Cl: R, =H, R, = OMe
~_/ N e D4-Cl: R, = N(Me),, R, = H
Clﬁd kN/ D5-ClI: R; = N(Me), R, = Cl
|

Rz

Dicyclopalladated monomeric complexes D1-Cl - D5-Cl were prepared according to a procedure

developed by our group.® The mixture of 0.80 mmol PdCl,, 0.20 mmol of the corresponding
azobenzene, 0.40 mmol NaOAc, and 15 plL H,0 was milled at 30 Hz. The milling time for D1-Cl, D2-Cl,
and D3-Cl was 72 h, 5h for D4-Cl, and 3h for D5-CI. The crude product was washed with water, dried
in the air, and recrystallized from DMF.

Ny / X
L /N ©
Bd kN/
Cl |
Cl
OMe
| /CI
/Nm /Pd\
N~
OL /N O|
Pd kN/
Cl |

[{PdCI(DMF)}>(-CsHaN=NCsH4)] (D1-Cl).
general procedure, the titled compound was obtained as a
(659 mg, 54 %
Characterization data are consistent with those previously
published.”

'H NMR (DMSO-ds, 300 MHz, &/ppm: 8.75 (d, J = 6.2 Hz, 2H),
7.95 (s, 1H), 7.97 (dd, J = 7.6 Hz, 2H), 7.20-7.25 (m, 4H), 2.89
(s,3H),2.73 (m, 3H).

Following the

brown crystalline solid isolated).

[{PdCI(DMF)}>(p-CsHsCIN=NCsHs)] (D2-Cl).
general procedure, the titled compound was obtained as a
(699 mg, 47 %
Characterization data are consistent with those previously
published.®

'H NMR (DMSO-ds, 600 MHz, &/ppm): 8.78 (d, J = 8.9 Hz, 1H),
8.74 (d, J = 5.0 Hz, 1H), 7.95 (s, 1H), 7.85-7.88 (m, 1H), 7.82 (s,
1H), 7.73 (dd, J = 8.6 Hz, 1H), 7.22-7.25 (m, 2H), 2.89 (s, 3H),
2.73 (s, 3H).

Following the

brown crystalline solid isolated).

[{PdCI(DMF)},(u-CeH3sOCH3N=NCsH,)] (D3-Cl). Following the
general procedure, the titled compound was obtained as a
(97.3 mg, 76 %
Characterization data are consistent with those previously
published.®

'H NMR (DMSO-ds, 600 MHz, &/ppm: 9.14 (d, J = 9.1 Hz, 1H),
8.59 (d, J = 7.6 Hz, 1H), 7.95 (s, 1H), 7.80 (d, J = 7.4 Hz, 1H),
7.38 (s, 1H), 7.18 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.85
(dd, J=9.1 Hz, 1H), 3.87 (s, 3H), 2.89 (s, 3H), 2.73 (s, 3H).

brown crystalline solid isolated).



Pd/ Characterization data are consistent those with previously
published.®?

'H NMR (DMSO-ds, 600 MHz, &/ppm): 8.50 (d, J = 9.0 Hz, 1H),
8.20 (d, J = 7.8 Hz, 1H), 7.95 (s, 1H), 7.67 (dd, J = 7.9 Hz, 1H),
7.21 (s, 1H), 7.04 (t, J = 3.23 Hz, 1H), 6.86 (t, J = 3.2 Hz, 1H),
6.62 (dd, J=9.3 Hz, 1H), 3.18 (s, 6H), 2.89 (s, 3H), 2.73 (s, 3H).

~
general procedure, the titled compound was obtained as a
c black crystalline solid (108.4 mg, 83 % isolated).
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N [{PdCI(DMF)}.(-CsHaN=NCsHsNMe,)] (D4-Cl). Following the
N

[{PdCI(DMF)},(u-CeHsNCI=NCICsHsNMe;)] (D5-Cl). Following
the general procedure, the title compound was obtained as a
black crystalline solid (1155 mg, 84 % isolated).
Characterization data are consistent with those previously
published.®

'H NMR (DMSO-ds, 300 MHz, &/ppm): 8.48 (d, J = 8.5 Hz, 1H),
8.26 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.62 (s, 1H), 7.21 (s, 1H),
7.13 (dd, J = 8.5 Hz, 1H), 6.65 (dd, J = 9.3 Hz, 1H), 3.19 (s, 6H),
2.89 (s, 3H), 2.73 (s, 3H).
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1.6 Synthesis of [(PPY)Pd(p-Cl)]. (M6-Cl)
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The reaction mixture of 71.5 pL (0.5 mmol) 4-phenylpyridine (PPY), 186.2 mg PdCl, (1.05 mmol), 41.0
mg NaOAc (0.5 mmol), 15 pL H,0, and 150.0 mg SiO, was milled for 1.5 h. at 30 Hz. The reaction
mixture was suspended in 15 mL of acetonitrile and filtered. The residue on the filter paper was rinsed
with acetonitrile. Organic extracts were then combined and the solvent was evaporated under
reduced pressure. The crude product was suspended in water, filtered, and rinsed with water,
chloroform, and diethyl ether. The product was dried in the air and obtained as a yellow powder.
(106.4 mg, 71 % isolated). Characterization data are consistent with those previously published.®

'H NMR (DMSO-ds, 600 MHz, &/ppm): 9.26 (br.), 8.47 (br), 8.06 (br, 2H), 7.67 (t, J = 18.4 Hz, 2H), 7.45
(br, 1H), 7.07 (t, J = 25.3 Hz, 2H).



1.7 Synthesis of [(bhq)Pd(u-Cl)]> (M7-Cl)

99 %
PdCl,
B ——

NaOAc
N Hzo
SiO,

The reaction mixture of 89.6 mg (0.5 mmol) of benzo[h]quinoline (bhqg), 186.2 mg PdCl, (1.05 mmol),
41.0 mg (0.5 mmol) NaOAc, 15 uL H,0, and 150.0 mg SiO, was milled for 1 h at 30 Hz. The reaction
mixture was suspended in 15 mL of acetonitrile and filtered. The residue on the filter paper was rinsed
with acetonitrile. Organic extracts were then combined and the solvent was evaporated under
reduced pressure. The crude product was suspended in water, filtered, and rinsed with water,
chloroform, and diethyl ether. The product was dried in the air and obtained as a yellow powder.
(112.3 mg, 70 % isolated). Characterization data are consistent with those previously published.®

'H NMR (DMSO-ds, 600 MHz, §/ppm): 9.47 (d, J = 4.6 Hz, 1H), 8.72 (d, /= 7.7, 1H), 8.24 (d, J = 7.2, 1H),
7.95(d,J=9.0, 1H), 7.91-7.78 (m, 3H), 7.78-7.70 (br), 7.69-7.60 (br), 7.55 (t, /= 7.5, 1H), 7.44-7.30 (br).

1.8 Synthesis of [(BMS)Pd(u-Cl)]. (M8-Cl)

LA |

s O °O . S
s~ __Pd(OAc), Ny Py LiCl oy~ g
_ FAalACk | AN
HOAc, reflux | | X acetone, r. t. ~c” N

S

00 9 |

M8-Cl

Cyclopalladated dimeric complex M8-Cl was prepared according to a known procedure.!* 200.0 mg
(0.82 mmol) Pd(OAc), was dissolved in 20 mL of concentrated HOAc. To this solution, 111.2 pL (0.82
mmol) benzyl methyl sulfide (BMS) was added, and the reaction mixture was refluxed for 8 h. Upon
cooling, the reaction mixture was neutralized with a saturated aq. solution of NaHCOs. The resulting
yellowish precipitate was filtered, washed with water, and dried under reduced pressure. The dry
product was stirred with 344.3 mg (8.12 mmol, of LiCl for 24 h in 10 mL of acetone. The resulting
mixture was rinsed with water to remove LiCl and LiOAc, washed with acetone, and dried under
reduced pressure. The product was isolated as yellowish powder insoluble in conventional solvents
(155.2 mg, 68 % isolated).



1.9 Synthesis of [(AA)Pd(p-Cl)]> (M9-Cl)
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Cyclopalladated dimeric complex M9-Cl was prepared according to a known procedure.!? 200.0 mg
(0.82 mmol) Pd(OAc), was dissolved in 20 mL of toluene. 110.6 mg (0.82 mmol) of acetanilide (AA)
was added, and the reaction mixture was refluxed for 8 h and cooled to the ambient temperature
afterwards. The resulting yellow-greenish precipitate was filtered, washed with water, and dried
under reduced pressure. The dry product was then stirred for 24 h with 344.3 mg (8.12 mmol) of LiCl
in 10 mL of acetone. The resulting mixture was rinsed with water to remove LiCl and LiOAc, washed
with acetone and dried under reduced pressure. The product was obtained as a pale yellow powder
(137.2 mg, 64 % isolated).

'H NMR (DMSO-de, 300 MHz, &/ppm): 11.44 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.03 (br, 1H), 6.90 (br, 2H),
7.27 (s, 3H).

1.10 Synthesis of [(CsHsN=NCgH4)Pd(p-OAc)]. (M1-OAc)

e, O \OQ

(OAc), o N

N, =72, Pd Y/ SN
Pd
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°N No 7| |lD oW \F(’)d
DMF vapor \\N OYO !
OY

transoid M1-OAc (major isomer)  cisoid M1-OAc (minor isomer)

N

Monocyclopalladated dimeric complex M1-OAc was prepared using the accelerated aging method
developed by our group.®® The mixture of 50.0 mg (0.27 mmol) of azobenzene and 61.6 mg (0.27
mmol) Pd(OAc), was homogenized by gentle grinding in an agate mortar. It was put in a closed vial
saturated with DMF vapors at ambient temperature for five days. The product was dried on air (97%
isolated).

Transoid isomer: *H NMR (CDCls, 600 MHz, &/ppm): 7.70 (dd, J = 7.7 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H),
7.34 (d, J = 8.1 Hz, 2H), 7.25 (t, J = 7.9 Hz, 2H), 7.14 (dt, J = 7.5 Hz, 1H), 6.80 (dt, J = 7.6 Hz, 1H), 6.49
(dd, J=7.8 Hz, 1H), 2.08 (s, 3H).

Cisoid isomer: *H NMR (CDCls, 600 MHz, &/ppm): 7.55 (dd, J= 7.7 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.37
(ovp., 1H), 7.19 (t, J=7.9 Hz, 2H), 7.14 (ovp., 1H), 6.97 (dt, J = 7.5 Hz, 1H), 6.72 (dt, J = 7.9 Hz, 1H), 2.34
(s, 3H), 1.79 (3H, s).



1.11 Synthesis of [Pd(p-OAc).(u-CsHsN=NCsH4)Pd], (D1-OAc)

Ne /N o)
o N o NaOAc N XN
~ d/ N ||\ \Ple/’ N /O
Aol U el
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| \(O
D1-Cl D1-OAc

Dicyclopalladated dimeric complex D1-OAc was prepared using the solid-state anion exchange
method developed by our group.'* The mixture of 40.0 mg (0.07 mmol) D1-Cl and 216.6 mg (2.64
mmol) NaOAc was milled for 3 h. The resulting mixture was washed with water, dried under reduced
pressure, and recrystallized from CHCls. The product was obtained as a black powder (28.3 mg, 84 %
isolated). The procedure was repeated three times to obtain the product for the deuteration reaction.
'H NMR (CDCls, 600 MHz, &/ppm): 8.03 (d, J = 8.2 Hz, 2H), 6.68-6.88 (m, 6H), 2.20 (s, 3H), 2.19 (s, 3H).

1.12 Deuteration of L-Cysteine

3.0 g of L-Cys was dissolved in 16 mL of D,0. The solution was refluxed for 1 h, evaporated under
reduced pressure, and cooled to ambient temperature. This procedure was repeated twice using a
new portion of D,0. The deuteration of cysteine was confirmed by IR and Raman spectroscopies (Figs.
$83, S91 and S92).

1.13. Deuteration of 1-adamantanethiol and 4-chlorothiophenol

1.0 g of 1-adamantanethiol or 4-chlorothiophenol was dissolved in 15 mL EtOD. The solution was
refluxed for 1 h, evaporated under reduced pressure, and cooled to ambient temperature. The
procedure was repeated twice using a new portion of EtOD. The deuteration was confirmed by IR and
'H NMR spectroscopies (Figs. S17, 518, S93 and S94).

1.14 Deuteration reactions — general procedures

The mixture of 0.14 mmol dimeric monocyclopalladated (M1-Cl - M3-Cl, M6-Cl - M9-Cl, M1-OAc) or
monomeric dicyclopalladated complexes (D1-Cl - D5-Cl, D1-OAc) and 1.12 mmol of Cys®® (4 equiv. per
Pd) was milled at ambient temperature. In the reactions of monomeric monocyclopalladated
complexes (M4-Cl and M5-Cl) with Cys*®, 0.28 mmol of starting complex was used. The completeness
of the reactions was confirmed by in situ Raman monitoring, where possible, and by recording *H NMR
spectra of samples taken from the reaction mixtures. Reaction times, yields, and deuteration ratios
are given in the manuscript. Reaction mixtures remained a powder throughout the milling process.
The resulting organic products were suspended in 15 mL of n-hexane and filtered. The residue on the
filter paper was washed with 2x5 mL of n-hexane. The extracts were then combined, and the solvent
was evaporated under reduced pressure. The products obtained were dissolved in a small amount of

10



chloroform and further purified by column chromatography using SiO, as the solid phase and
chloroform as the eluent.

In selected cases, after extraction with n-hexane, the solid residue was dried in air, washed with water
to remove excess Cys*?, and dried in air. The remaining insoluble brown residue of [Pd(Cys3®),] was
obtained in good yield (80-87 %).

To confirm the formation of a cyclopalladated intermediate with cysteine coordinated to the
palladium ion in the cyclopalladated complex, an additional experiment was performed. The reaction
mixture of 90.3 mg (0.14 mmol) M1-Cl, 33.9 mg (0.28 mmol) native Cys, 26.5 mg (0.28 mmol) NaOAc,
and 150.0 mg NaCl as milling auxiliary was milled for 75 min. The *H NMR spectrum of the resulting
mixture confirmed the formation of the cyclopalladated intermediate M1-1 (Figs. S63 and S64).

1.15 Optimization of the reactions conditions

To optimize reaction conditions, M1-Cl (0.14 mmol) or D1-Cl (0.28 mmol) and 1.12 mmol Cys*® (4
equiv. per palladium atom) were milled at ambient temperature for 8, 10, 15 and 24 h.

To screen for different D-sources, D1-Cl (0.28 mmol) was milled with 1.12 mmol of D,0, EtOD, ND,4ClI,
1-adamantanethiol-d, 4-chlorothiophenol-d or Cys*? for 15 h. After milling, reaction mixtures of D1-Cl
and (1-adamantanethiol)-d or (4-chlorothiophenol)-d were a sticky paste due to the low melting point
of the reactants. Conversion and deuteration degree were estimated by H NMR.

In the case of D1-Cl additional reactions with NaOAc or DMAP (2.28 mmol) as solid additives as well
as with D0 (1.14 mmol) as a liquid additive were performed. The reaction mixtures were milled at
ambient temperature for 15 h.

In the case of M1-Cl additional reaction with DMF (0.28 mmol) as a liquid additive was performed. The
reaction mixture was milled at ambient temperature for 15 h.

Table S1. Optimization of reaction conditions.?

Entry | Precursor D-source D-source Solid Liquid t Deuteration Yield®
equiv. per additive additive (h) (%)° (%)
Pd
1 D1-Cl D20 4 none none 15 - 0
2 D1-Cl EtOD 4 none none 15 - 0
3 D1-Cl ND4Cl 4 none none 15 - 0
4 D1-Cl SD 4 none none 15 54 31

<is]

5 D1-Cl none none 15 - trace
6 D1-Cl Gly 4 none none 15 - 0
7 D1-Cl L-Ala 4 none none 15 - 0
8 D1-Cl Cys 1 none none 15 - 22¢
9 D1-Cl Cys 2 none none 15 - 60¢
10 D1-Cl Cys 4 none none 15 - 79¢
11 D1-Cl Cys?*P 4 none none 8 83 66
12 D1-Cl Cys*P 4 none none 10 84 72
12 D1-Cl Cys*? 4 none none 15 84 83
13 D1-Cl Cys*? 4 none none 24 84 82
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14 D1-Cl Cys®Pe 10 none none 15 85 80
16 D1-Cl Cys*? 4 none D0f 15 84 82
17 D1-Cl Cys*? 4 NaOAc8 none 15 55 7
18 D1-Cl Cys*? 4 DMAPS none 15 - trace
19 M1-Cl Cys 1 none none 15 - 10¢
20 M1-Cl Cys 2 none none 15 - 46°
21 M1-Cl Cys 4 none none 15 - 88¢
22 M1-Cl Cys*? 4 none none 8 61 62
23 M1-Cl Cys*? 4 none none 10 61 70
24 M1-Cl Cys*? 4 none none 15 61 77
25 M1-Cl Cys*? 4 none none 24 61 78
26 M1-Cl Cys?*Pe 10 none none 15 62 79
27 M1-Cl Cys*? 4 none DMF" 24 60 40
28 1 Cys*Pi 8 none none 15 - 974
29 1 Cys?*Pi 8 none none 15 - 974

@Reaction conditions: mixer mill, 30 Hz, 14 mL poly(methyl methacrylate) (PMMA) jar, one ZrO2 milling ball
(diameter 10 mm, 4.5 g), precursor (0.14 mmol), D-source (4 equiv. per Pd if not stated otherwise). ®Percentage
of deuteration (average for all magnetically equivalent nuclei) at the site of the D incorporation. “Isolated yield.
dNative 1 was isolated. €20 equiv. per precursor (10 equiv. per Pd). f16 equiv. per precursor (8 equiv. per Pd). &2
equiv. per precursor (1 equiv. per Pd). "Two equiv. per precursor (1 equiv. per Pd). '8 equiv. per precursor of Cys*°
and 5 mol% equiv. PdCl».J8 equiv. per precursor of Cys*® and 1 equiv. of PdCl..

1.16 Mechanochemical synthesis of [Pd(Cys>?).]

The mixture of 200.0 mg (1.7 mmol) of native Cys and 146.0 mg (0.83 mmol) PdCl, were milled for 4 h
at ambient temperature. The formation of [Pd(Cys3?),] complex was supported by the IR spectra (Fig.
$104).

1.17 Computational details. Calculations were carried out using B3LYP hybrid functional combined
with an empirical Grimme’s D3 dispersion correction®® (B3LYP-D3) implemented in Gaussian16.1® Pd
atoms were modeled by the Stuttgart-Dresden (SDD) pseudopotential and the accompanying SDD
basis set.!” Standard 6-311+G** basis set was used for C, H/D, N, O, S and Cl atoms.

For the deuteration of the monocyclopalladated azobenzene additional methods apart from the
B3LYP-D3/6-311+G**/SDD(Pd)/gas phase were tested: 1) a small basis set: B3LYP-D3/6-
31G*/SDD(Pd)/gas phase; 2) no empirical dispersion correction: B3LYP/6-311+G**/SDD(Pd)/gas
phase; 3) more modern basis set: B3LYP-D3/def2tzvp/gas phase; 4) more modern functional: wB97x-
D/6-311+G**/SDD(Pd)/gas phase; 5) solvation effects modeled with the polarizable continuum model
(PCM)® for DMF as implemented in Gaussian16: B3LYP-D3/6-311+G**/SDD(Pd)/PCM(DMF); 6)
solvation effects modeled with the polarizable continuum model (PCM)?*° for propanoic acid: B3LYP-
D3/6-311+G**/SDD(Pd)/PCM(propanoic acid). Results are presented in Table S2.

Full geometry optimizations were accompanied by vibrational frequency calculations that identified
calculated stationary points as minima (reactants and products) or first-order saddle points (transition
states). Nature of the transition states was confirmed by intrinsic reaction coordinate (IRC) searches'®
followed by full geometry optimizations. Reported energies are free energies given at 298.15 K and 1
atm. No additional corrections were applied.
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2. 'H NMR spectroscopy

'H NMR data for the deuterated products 1°-9° and 1%°-5%° (298 K, & / ppm, Jun / Hz). Signals are
marked as s — singlet, d — doublet, t — triplet, m — multiplet. Atom numbering is given in the schemes
below. Integrals of the signals assigned to hydrogens that are partly exchanged with deuterium are in

red.
R 4
4 57 33
573 |
1:R; =Ry = H sl 12 N
2:R,;=H, R, =Cl ] N
3:R,=H, R, = OCH, N. °N
4: R, = N(CHa),, Ry = H "N
5: R, = N(CHy),, Ry = Cl 8 NP
9 11
10 1D
R2
1D 12D
(cDCls) (cDCls)
H-2,6 | 7.92dd,3.39H | 7.92dd, 1.16H
J=81,14 J=83,1.4
H-3,4,5 | 7.55-7.46 m, 6H | 7.55-7.47 m, 3H
zD 220 3D 320
(cDCls) (cDCls) (cDCls) (cDCls)
H-2,6 | 7.87d,1.87H | 7.88d,1.36H | 7.93d,1.61H | 7.93d, 1.22H
J=88Hz /=88 /=89 /=96
H-3,5 | 7.50t, 2H 7.51¢, 2H 7.51t, 2H 7.49t, 2H
1=7.0 =75 =67 /=68
H-4 7.56-7.46 m, 1H | 7.56-7.46 m, 1H | 7.44 1, 1H 7.43 1, 1H
=69 /=69
H-8,12 | 7.91dd, 1.50H | 7.91dd, 1.12H | 7.88dd, 1.65H | 7.88d, 1.14H
J=83,19 /=84,16 J=82,15 /=78
H-9,11 | 7.56-7.46 m, 2H | 7.56-7.46 m, 2H | 7.02d, 2H 7.02d, 2H
/=89 /=88
CHs - - 3.90s, 3H 3.90s, 3H
4D 42D 5D 52D
(cDCls) (cDCls) (cDCls) (cDCls)
H-2,6 | 7.89d,1.44H | 7.88d,1.29H | 7.86d, 1.48H | 7.87 d, 1.22H
/=93 /=93 =92 =92
H-3,5 |6.76d,2H 6.80-6.74m, 2H | 6.75d, 2H 6.77-6.74 m, 2H
/=93 =92
H-8,12 | 7.85dd,2H | 7.84dd, 1.21H | 7.79d, 2H 7.78 d, 1.30H
J=85,11 |J=8511 =87 =87
H-9,11 | 7.48 ¢, 2H 7.51-7.45m, 2H | 7.43d, 2H 7.45-7.42 m, 2H
=75 =73
H-10 |7.38¢ 1H 7.41t, 1H - -
=73 =73
CHs 3.08s, 6H 3.08s, 6H 3.09s, 6H 3.09s, 6H
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4 5

12 11

7 N6 _/ N\

2
8 9
2-phenylpyridine (6)
GD
(CDCls)
H-2 8.71-8.68 m, 1H
H-3 7.24-7.21 m, 1H
H-4 7.77-7.72 m, 2H
H-5 7.77-7.72 m, 2H
H-8,12 | 8.00d, 1.31H
J=8.0
H-9,11 | 7.48t, 2H
J=73
H-10 7.43-7.40 m, 1H

5
4

6
A S
Z
3

1

2

benzyl methyl sulphide (8)

10 9
benzo[h]quincline (7)

7D
(CDCl3)

H-2 9.01dd, 1H
J=46,1.7

H-3 7.54dd, 1H
J/=83,43

H-4 8.19dd, 1H
J=81,18

H-5 7.70d, 1H
/=8.8

H-6 7.82d, 1H
/=8.8

H-7 7.92dd, 1H
J=7.6,16

H-8 7.79-7.72 m, 2H

H-9 7.79-7.72 m, 2H

H-10 | 9.30d, 0.31H
/=85

6  H_s
1_N_7
57 | \n/
4 2 O
3

acetanilide (9)

8P 9P
(DMSO-ds) (DMSO-ds)
H-2,6 | 7.35-7.27 m, 1.29H | 7.57 dd, 1.39H
J=8.8,0.9
H-3,5 | 7.35-7.27m,2H | 7.28t, 2H
J=79
H-4 7.27-7.21m, 1H 7.01t,1H
J=7.4
H-7 3.68s,2H -
H-8 1.94 s, 3H 2.03s,3H
NH - 9.90s, 1H
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Fig. $23. 'H NMR spectrum in CDCl; at 298 K (400 MHz) of 12° synthesized by the reaction of D1-OAc
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. $28. 'H NMR spectrum in CDCls at 298 K (400 MHz) of 3P synthesized by the reaction of M3-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. $32. 'H NMR spectrum in CDCls at 298 K (400 MHz) of 4?° synthesized by the reaction of D4-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. $33. 'H NMR spectrum of native 5 in CDCl; at 298 K (400 MHz).
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Fig. S34. 'H NMR spectrum in CDCl; at 298 K (400 MHz) of 5° synthesized by the reaction of M5-Cl
(0.28 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. $35. 'H NMR spectrum in CDCl; at 298 K (400 MHz) of 52° synthesized by the reaction of D5-CI

(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. $37. *H NMR spectrum in CDCl; at 298 K (400 MHz) of 6° synthesized by the reaction of M6-Cl

(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. S38. 'H NMR spectrum of native 7 in CDCls at 298 K (400 MHz).
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Fig. $39. 'H NMR spectrum in CDCl; at 298 K (400 MHz) of 7° synthesized by the reaction of M7-Cl

(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. S40. 'H NMR spectrum of native 8 in DMSO-ds at 298 K (400 MHz).
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Fig. S41. *H NMR spectrum in DMSO-ds at 298 K (400 MHz) of 8° synthesized by the reaction of M8-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.

9.901

T T T T T
100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 2 1.0 05 ppm

©
-
o

9901
0281 _—

0.9943

Fig. S42. 'H NMR spectrum of native 9 in DMSO-ds at 298 K (400 MHz).
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Fig. S43. 'H NMR spectrum in DMSO-ds at 298 K (400 MHz) of 9° synthesized by the reaction of M9-CI
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. S44. 'H NMR spectra in DMSO-ds at 298 K (300 MHz) of crude reaction mixtures of M1-Cl (0.14
mmol) and Cys* (1.12 mmol) milled for a) 8 h, b) 10 h, ¢) 15 h and d) 24 h. Relative intensities of the
signals of 1°, intermediates and M1-Cl are not representative due to low solubility of M1-Cl and
intermediates in DMSO.

36



Fig. S45. 'H NMR spectrum in CDCl; at 298 K (300 MHz) of 1° synthesized by the reaction of M1-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 8 h.

Fig. S46. 'H NMR spectrum in CDCls at 298 K (300 MHz) of 1° synthesized by the reaction of M1-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 10 h.
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Fig. S47. *H NMR spectrum in CDCl; at 298 K (600 MHz) of 1° synthesized by the reaction of M1-Cl
(0.14 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 24 h.
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Fig. S48. 'H NMR spectra in DMSO-ds at 298 K (300 MHz) of crude reaction mixtures of D1-Cl (0.28
mmol) and Cys* (1.12 mmol) milled for a) 8 h, b) 10 h, ¢) 15 h and d) 24 h. Relative intensities of the
signals of 1°, intermediates and D1-Cl are not representative due to low solubility of D1-Cl and
intermediates in DMSO.
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Fig. S49. 'H NMR spectrum in CDCl; at 298 K (600 MHz) of 12° synthesized by the reaction of D1-Cl
(0.28 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 8 h.
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Fig. $50. *H NMR spectrum in CDCls at 298 K (600 MHz) of 12° synthesized by the reaction of D1-Cl
(0.28 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 10 h.
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Fig. S51. 'H NMR spectrum in CDCl; at 298 K (300 MHz) of 1%° synthesized by the reaction of D1-Cl
(0.28 mmol) and Cys*? (1.12 mmol) under ball-milling conditions. Reaction time was 24 h.
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Fig. $52. 'H NMR spectra in DMSO-ds at 298 K (300 MHz) of crude reaction mixtures consisted of D1-

Cl (0.28 mmol) and a) Gly (1.12 mmol) or b) L-Ala (1.12 mmol). Reaction mixtures were milled for 15
h and washed with water.
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Fig. $53. Aromatic part of *H NMR spectra in DMSO-ds at 298 K (600 MHz) of crude reaction mixtures
of D1-Cl (0.28 mmol) and Cys®° (1.12 mmol) with addition of a) DMAP (2.24 mmol) and b) NaOAc (2.24
mmol) as solid additives. Reaction mixtures were milled for 15 h. Relative intensities of the signals of
1°, intermediates and D1-Cl are not representative due to low solubility of D1-Cl and intermediates in
DMSO.
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Fig. S54. 'H NMR spectrum in CDCl; at 298 K (600 MHz) of 12° synthesized by the reaction of
D1-Cl (0.28 mmol) and Cys*’ (1.12 mmol) with addition of NaOAc (2.24 mmol) under ball-milling
conditions. Reaction time was 15 h.
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Fig. S55. 'H NMR spectra in DMSO-ds at 298 K (600 MHz) of reaction mixtures of D1-Cl (0.28 mmol)
and a) D,0 (1.12 mmol), b) EtOD (1.12 mmol) or c) ND4Cl (1.12 mmol). Reaction mixtures were milled
for 15 h. Samples of reaction mixtures a) and b) were dried in air and c) the reaction mixture was

rinsed with water and dried in air prior to recording NMR spectra.
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Fig. $56. 'H NMR spectra in DMSO-ds at 298 K (600 MHz) of crude reaction mixtures of D1-Cl (0.28

mmol) and: a) (1-adamantanethiol)-d (1.12 mmol) or b) (4-chlorothiophenol)-d (1.12 mmol). Reaction

mixtures were milled for 15 h.
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Fig. $57. *H NMR spectrum in DMSO-ds at 298 K (600 MHz) of 12° synthesized by the reaction of D1-Cl

(0.28 mmol) and (1-adamantanethiol)-d (1.12 mmol) under ball-milling conditions. Reaction time was
15 h.
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Fig. S58. 'H NMR spectrum in CDCl; at 298 K (600 MHz) of 1° synthesized by the reaction of M1-Cl
(0.14 mmol) and excess of Cys®® (2.80 mmol) under ball-milling conditions. Reaction time was 15 h.
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Fig. S59. 'H NMR spectrum in CDCl; at 298 K (600 MHz) of 12° synthesized by the reaction of D1-Cl
(0.14 mmol) and excess of Cys®® (2.80 mmol) under ball-milling conditions. Reaction time was 15 h.

ppm

Fig. $60. *"H NMR spectrum in CDCls at 298 K (600 MHz) of 12° synthesized by the reaction of D1-Cl

(0.14 mmol) and Cys* (1.12 mmol) with addition of D,O (2.24 mmol) under ball-milling conditions.
Reaction time was 15 h.
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Fig. S61. 'H NMR spectrum in CDCl; at 298 K (600 MHz) of 1 obtained by the reaction with Cys*" (1.12
mmol, 1 equiv.) and PdCl; (0.007 mmol, 5 mol%) under ball-milling conditions. Reaction time was 15
h.

_—

Fig. S62. 'H NMR spectrum in CDCls at 298 K (600 MHz) of 1 obtained by the reaction with Cys®® (1.12
mmol, 8 equiv.) and PdCl, (0.14 mmol, 1 equiv.) under ball-milling conditions. Reaction time was 15 h.
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Fig. $63. 'H NMR spectrum (DMSO-ds, 298 K, 600 MHz) of the crude reaction mixture recorded after
75 min milling of the native L-Cys (0.14 mmol), M1-Cl, (0.28 mmol), NaOAc (0.28 mmol), and 150.0 mg
NaCl as milling auxiliary. The spectrum is attributed to the monopalladated cysteine complex M1-1.
'H NMR (&/ppm): 7.96 (dd, J = 7.95 Hz, 2H), 7.89 (dd, J = 8.1 Hz, 2H), 7.79 (d, J = 7.2, 2H), 7.63-7.53 (m,
6H), 7.41(d, J = 7.8 Hz, 2H), 7.22 (t, J = 7.2 2H), 7.18 (t, J = 6.8, 1H), 4.39 (br m, 1H, NH), 4.04 (br m, 1H,
NH), 3.46 (br m, 1H, CH), 2.65 (br m, 2H, CH,).
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Fig. S64. H-'H COSY spectrum (DMSO-ds, 298 K, 600 MHz) of the crude reaction mixture recorded
after 75 min of milling L-Cys (0.14 mmol), M1-Cl, (0.28 mmol), NaOAc (0.28 mmol), and 150.0 mg NaCl

as a milling auxiliary.
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Fig. $65. Aromatic parts of *H NMR spectra in DMSO-ds at 298 K (600 MHz): of: a) crude reaction
mixture recorded after 75 min milling of the native L-Cys (0.14 mmol), M1-Cl, (0.28 mmol), NaOAc

(0.28 mmol), and 150.0 mg NaCl as a milling auxiliary, b) M1-Cl, and c) 1.
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Fig. S66. 'H NMR spectrum (DMSO-ds, 298 K, 600 MHz) of the product of the reaction of the native L-
Ala (2.8 mmol) and D7-Cl, (0.28 mmol). Reaction mixture was milled for 15 h, washed with water and
dried in air. Selected data (6/ppm): 8.79 (d, J 9.1 Hz, 1H), 8.54 (d, J = 8.9 Hz, 1H), 7.19 (d, J = 9.1 Hz,
1H), 7.11 (1, 1H), 6.71 (d, / = 9.6 Hz, 1H), 6.54 (s, 1H), 5.61 (br m, 2H, NH), 5.08 (br m, 2H, NH). Two
observed signals for amino protons in L-Ala indicate formation of the chelate complex.
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Fig. S67. Aromatic part of *H NMR spectrum in DMSO-ds at 298 K (600 MHz) of crude reaction mixture
of M1-Cl (0.14 mmol) with Cys*? (1.12 mmol) with DMF (0.28 mmol) as a liquid additive. Reaction time

was 15 h.
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Fig. S68. *H NMR spectrum in CDCls at 298 K (300 MHz) of 1° obtained by reaction of M1-Cl (0.14
mmol) with Cys*® (1.12 mmol) with DMF (0.28 mmol) as a liquid additive. Reaction time was 15 h.
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3. 3C NMR spectroscopy

13C NMR data for the deuterated products 1°-9° and 12°-52° (298 K, & / ppm, YJep / Hz). Signals are
singlets except those that are marked as t — triplet. The proposed assignment of the observed peaks
is listed using the atom numbering given in the schemes below. Carbon that has a bound deuteron
and its first neighbour carbons are in blue. Spectra are drawn in Figs. S69-582.

4 4
5 3 57 33
R |
4 6 2 B 02
1:Ry=R,=H gy N, N,
‘Ry=Ry= NG “N N
2R, =H. R, =Cl ] 7 7
3: Ry =H, R, =0CHj3 N. 8 12 8 12
4: R, =N(CHa),, Ry = H ‘7N 9 11 9 5 11
5: Ry = N(CHa),, R, = Cl 8 1 10Rz 1
9 11 2D D D D
10 o and 3°a 2B and 3B
Ro 13% 39% 50% 34%
1 1% 1 1°
(cDCls) (cDCls) (cDCls) (cDCls)
C-1 152.78 152.80 C-1 152.78 152.73
C-2,6 122.98 122.681 C-2 122.98 122.66t
J=25.0 J=24.9
C-3,5 129.20 129.12 C-3 129.20 129.10
C-4 131.08 131.13 C-4 131.08 131.11
C-5 129.20 129.20
C-6 122.98 122.98
C-7 152.78 152.78
C-8,12 122.98 122.98
C-9,11 129.20 129.20
C-10 131.08 131.08
2 ZD(}.* ZDB ZZD 3 3D(x 3DB 3 32D
(CDCl3) | (CDCls) | (CDCls) | (CDCls) (CDCls) | (cDCls) | (CDCls) | (DMSO-ds) | (DMSO-ds)
C-1 | 152.59 | 152.59 152.52 152.56 152.88 | 152.88 152.84 152.04 151.99
C-2 | 123.08 | 123.07 | 122.76t | 122.76 t 124.87 124.87 | 12457t 124.61 124.32 t
J=25.0 | /J=25.0 J=245 /=245
C-3 | 129.27 | 129.27 | 129.16 129.17 129.14 | 129.14 129.03 129.40 129.30
C4 | 13141 | 131.41 131.41 131.42 130.47 | 130.47 130.47 130.83 130.83
C-5 | 129.24 | 129.27 | 129.27 129.28 129.14 | 129.14 129.14 129.40 129.40
C-6 | 123.08 | 123.07 | 123.07 123.09 124.87 | 124.87 124.87 124.61 124.62
C-7 | 151.11 | 151.05 151.10 151.08 147.13 147.07 147.13 146.19 146.13
151.13
C-8 | 124.26 * 124.26 | 12396t 122.68 | 12236t | 122.68 122.26 12196t
J=24.4 =246 J=24.6
C-9 | 129.47 | 129.37 129.47 129.38 114.32 114.24 114.32 114.63 114.54
C-10 | 137.03 | 137.02 137.02 137.05 162.17 162.17 162.17 162.07 162.06
C-11 | 129.47 | 129.47 | 129.47 129.48 114.32 114.32 114.32 114.63 114.64
C-12 | 124.26 | 124.26 | 124.26 124.29 122.68 | 122.70 122.70 122.26 122.26
CHs - - - - 55.64 55.67 55.67 55.61 55.68

* Amount of the compound 2P« in the sample 2P is small (deuteration degree at C-8 is only 13%) so signals are
not clearly observed.
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4 4D 42D 5 5D 52D

(cpcls) | (€Dcls) | (€DCls) (cpcls) | (€Dcls) | (€DCls)

C-1 | 143.78 | 143.78 143.82 143.62 | 143.56 143.61
C-2 | 125.09 | 124.72t | 124.77 t 123.57 | 123.27t | 123.27 t
J=249 | J=24.9 J=246 | /=246

C-3 | 111.62 | 111.52 111.56 111.65 | 111.56 111.52
C-4 | 153.35 | 153.35 153.31 152.73 | 152.73 152.72
C-5 | 111.62 | 111.62 111.66 111.65 | 111.66 111.62
C-6 | 125.09 | 125.09 125.10 123.57 | 123.57 | 123.57
C-7 | 152.54 | 152.54 152.58 151.73 | 151.73 151.76
C-8 | 122.32 | 122.32 | 122.08t 125.28 | 125.27 | 125.08t
J=24.6 J=24.5

C-9 | 129.05 | 129.05 128.97 129.26 | 129.26 129.14
C-10 | 129.48 | 129.48 129.51 135.07 | 135.07 135.05
C-11 | 129.05 | 129.05 129.07 129.26 | 129.26 129.24
C-12 | 122.32 | 122.32 122.34 125.28 | 125.27 125.27

CHs | 40.42 40.42 40.46 40.44 40.45 40.42

12 11

7 N6 _/ \

2

8 9

2-phenylpyridine (6)

10 9
benzol[h]quinoline (7)

6

3

SGIAS/
412

7 8

benzyl methyl sulphide (8)

I N8
i
o

2

wl! No

acetanilide (9)

6 6° 7 7° 8 8P 9 9P
(CDCI3) | (CDCls) | (CDCls) | (CDCls) | (DMSO-des) | (DMSO-ds) | (CDCI3) | (CDCl3)
C-1 - - - - 138.45 138.37 138.01 | 137.95
Cc-2 149.70 | 149.69 | 148.89 | 148.89 128.80 128.50t 120.02 | 119.74 t
J=23.4 /=245
c-3 120.59 | 120.59 | 121.85 | 121.85 128.29 128.18 129.13 | 129.03
c4 136.78 | 136.78 | 135.88 | 135.88 126.72 126.72 124.46 | 124.46
C-5 122.13 | 122.13 | 125.42 | 125.42 128.29 128.29 129.13 | 129.13
C-6 157.49 | 157.47 | 127.04 | 127.04 128.80 128.80 120.02 | 119.98
C-7 139.42 | 139.35 128.28 | 128.28 37.10 37.05 168.43 | 168.49
Cc-8 126.95 | 126.66t | 127.16 | 127.16 14.26 14.34 24.75 24.74
/=243
C-9 128.78 | 128.67 | 127.90 | 127.83 - - - -
C-10 | 128.98 | 128.98 | 124.46 | 124.19t - - - -
J1=24.7
C-11 | 128.78 | 128.78 | 146.65 | 146.65 - - - -
C-12 | 126.95 | 126.95 | 126.48 | 126.48 - - - -
C-13 - - 131.58 | 131.53 - - - -
C-14 - - 133.71 | 133.69 - - - -
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Fig. S69. 13C NMR spectrum of 1P in CDCl; at 298 K (151 MHz).
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Fig. $70. 13C NMR spectrum of 12° in CDCl3 at 298 K (151 MHz).
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Fig. S71. 13C NMR spectrum of 2P in CDCl; at 298 K (151 MHz).
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Fig. S72. 3C NMR spectrum of 22 in CDCl; at 298 K (151 MHz).
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Fig. S73. 13C NMR spectrum of 3% in CDCl; at 298 K (151 MHz).
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Fig. S74. 13C NMR spectrum of 32P in DMSO-ds at 298 K (151 MHz).
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Fig. S75. 3C NMR spectrum of 4P in CDCl5 at 298 K (151 MHz).
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Fig. S76. 3C NMR spectrum of 42° in CDCl; at 298 K (151 MHz).
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Fig. S77. 13C NMR spectrum of 5° in CDCl; at 298 K (151 MHz).
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Fig. S78. 13C NMR spectrum of 52° in CDCl3 at 298 K (151 MHz).
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Fig. S79. 13C NMR spectrum of 6° in CDCl; at 298 K (101 MHz).
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Fig. $80. 3C NMR spectrum of 7° in CDCl3 at 298 K (151 MHz).
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Fig. $82. 3C NMR spectrum of 9% in DMSO-ds at 298 K (151 MHz).
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4. Raman spectroscopy
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Fig. S83. Ex situ Raman spectra of Cys"* (blue) and Cys®° (red).
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Fig. S84. Ex-situ Raman spectra of a) 1 and b) 1P synthesized by the
M1-Cl (0.14 mmol) and Cys*® (1.12 mmol), and c) 12° synthesized by the reaction of D1-Cl (0.14 mmol)

and Cys*? (1.12 mmol) under ball-milling conditions.
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Fig. S85. Ex-situ Raman spectra of a) 2, b) 2'° synthesized by the reaction of M2-Cl (0.14 mmol) and
Cys® (1.12 mmol), and c) 22° synthesized by the reaction of D2-Cl (0.14 mmol) and Cys*® (1.12 mmol)
under ball-milling conditions.
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Fig. S86. Ex-situ Raman spectra of a) 3, b) 3'° synthesized by the reaction of M3-Cl (0.14 mmol) and

Cys* (1.12 mmol), and c) 3%° synthesized by the reaction of D3-Cl (0.14 mmol) and Cys*® (1.12 mmol)
under ball-milling conditions.
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Fig. S87. Ex-situ Raman spectra of a) 4, b) 4° synthesized by the reaction of M4-Cl (0.28 mmol) and
Cys® (1.12 mmol), and c) 4?° synthesized by the reaction of D4-Cl (0.14 mmol) and Cys*® (1.12 mmol)
under ball-milling conditions.
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Fig. S88. Ex-situ Raman spectra of a) 5, b) 5P synthesized by the reaction of M5-Cl (0.28 mmol) and
Cys* (1.12 mmol), and c¢) 5%° synthesized by the reaction of D5-Cl (0.14 mmol) and Cys*® (1.12 mmol)
under ball-milling conditions.
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Fig. $89. 2D time-resolved Raman monitoring of the reaction of M1-Cl and native Cys.
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Fig. $90. 2D time-resolved Raman monitoring of the reaction of D1-Cl and native Cys.
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Fig. S91. In-situ Raman spectra of the reaction mixture of the native Cys and 146.0 mg (0.83 mmol) of
PdCl, after 40 seconds of milling and after 2 hours of milling (left). Ex-situ Raman spectrum of pure
PdCl, (right).
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5. IR spectroscopy
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Fig. $92. FT-IR spectra of aj Cys and b) Cys*®.
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Fig. S93. FT-IR spectra of a) native and b) deuterated 1-adamantanethiol.
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Fig. S94. FT-IR spectra of a) native and b) deuterated 4-chlorothiophenol.
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Fig. S95. FT-IR spectra of a) 1, b) 1° synthesized by the reaction of M1-Cl (0.14 mmol) and Cys*® (1.12
mmol), and c) 1?° synthesized by the reaction of D1-Cl (0.14 mmol) and Cys®® (1.12 mmol) under ball-
milling conditions.
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Fig. S96. FT-IR spectra of a) 2, b) 2° synthesized by the reaction of M2-Cl (0.14 mmol) and Cys*® (1.12
mmol), and c) 22° synthesized by the reaction of D2-Cl (0.14 mmol) and Cys*® (1.12 mmol) under ball-

milling conditions.
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Fig. S97. FT-IR spectra of a) 3, b) 3° synthesized by the reaction of M3-Cl (0.14 mmol) and Cys*® (1.12
mmol), and c) 32° synthesized by the reaction of D3-Cl (0.14 mmol) and Cys*® (1.12 mmol) under ball-

milling conditions.

65



a)

%T

b)

%T

c)

%T

3500 3000 2500 2000 1750 1500 1250 1000 750 500 400
cm-1

Fig. S98. FT-IR spectra of a) 4, b) 4° synthesized by the reaction of M4-Cl (0.28 mmol) and Cys®° (1.12
mmol), and c) 4° synthesized by the reaction of D4-Cl (0.14 mmol) and Cys*® (1.12 mmol) under ball-
milling conditions.
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Fig. $99. FT-IR spectra of a) 5, b) 5° synthesized by the reaction of M5-Cl (0.28 mmol) and Cys*® (1.12
mmol), and c) 52° synthesized by the reaction of D5-Cl (0.14 mmol) and Cys*® (1.12 mmol) under ball-
milling conditions.
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Fig. S100. FT-IR spectra of a) 6 and b) 6P synthesized by the reaction of M6-Cl (0.14 mmol) and Cys*®

(1.12 mmol) under ball-milling conditions.
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Fig. S101. FT-IR spectra of a) 7 and b) 7° synthesized by the reaction of M7-Cl (0.14 mmol) and Cys*®

(1.12 mmol) under ball-milling conditions.
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Fig. S102. FT-IR spectra of a) 8 and b) 8P synthesized by the reaction of M8-Cl (0.14 mmol) and Cys*®
(1.12 mmol) under ball-milling conditions.
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Fig. S103. FT-IR spectra of a) 9 and b) 9° synthesized by the reaction of M9-Cl (0.14 mmol) and Cys*®
(1.12 mmol) under ball-milling conditions.
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Fig. S104. FT-IR spectra of a) native Cys, b) Cys*®, c) the solid residue from the reaction of ball-milling
deuteration of D1-Cl after extraction with n-hexane, washing with water to remove excess Cys, and d)
the product obtained by ball-milling reaction of the native Cys (1.7 mmol) with PdCl, (0.83 mmol).
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6. TG experiments
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Fig. $105. TG curve of the product obtained by ball-milling reaction of the native Cys (1.7 mmol) with
PdCl, (0.83 mmol) (heating ratio 10 °C/min, O, atmosphere). w(Pd)caic = 30.69 % (calc. for [Pd(Cys-H)],
C6H1204N252Pd), W(Pd)exp =29.28 %.
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Fig. S106. TG curve of the solid residue from the reaction of ball-milling deuteration of D1-Cl after
extraction with n-hexane, washing with water to remove excess cysteine, and air-drying (heating ratio
10 °C/min, synthetic air atmosphere). w(Pd)c. = 30.69 % (calc. for [Pd(Cys-H)2], CeH1204N2S,Pd,
W(Pd)exp. = 28.23 %.
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7. HRMS spectra

HRMS spectra of the isolated deuterated products with the enlarged relevant part of the spectrum
are given in Figs. S107-S134. Theoretical isotopic distributions for the given chemical formulae are
given along with the structures for the observed species. For the deuterated compounds that might
have isomers which are not differentiated by HRMS, only one of the possible isomers is drawn.

Chemical Formula: C4,H41No* Chemical Formula: C1,H1qDN,*
Exact Mass: 183.0917 Exact Mass: 184.0980
m/z: 183.0917 (100.0%), 184.0951 (13.0%) m/z: 184.0980 (100.0%), 185.1014 (13.0%)
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Fig. $107. HRMS spectrum of 1°.
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Fig. $108. HRMS spectrum of 1°(enlarged).
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Chemical Formula: C1,H¢{N,*
Exact Mass: 183.0917
m/z: 183.0917 (100.0%), 184.0951 (13.0%)
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Chemical Formula: C4,HgDoNy*
Exact Mass: 185.1042
m/z: 185.1043 (100.0%), 186.1076 (13.0%)
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Chemical Formula: C4,H,qDN,*
Exact Mass: 184.0980
m/z: 184.0980 (100.0%), 185.1014 (13.0%)

Chemical Formula: C;,HgD3N,"
Exact Mass: 186.1105
m/z: 186.1106 (100.0%), 187.1139 (13.0%)
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Chemical Formula: C4,H4qCIN,*
Exact Mass: 217.0527
miz: 217.0528 (100.0%), 219.0498 (32.0%),
218.0561 (13.0%), 220.0532 (4.1%)

Cl

Chemical Formula: C1,HgDCIN,*
Exact Mass: 218.0590
m/z: 218.0590 (100.0%), 220.0561 (32.0%),
219.0624 (13.0%), 221.0594 (4.1%)
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Fig. S111. HRMS spectrum of 2°.
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Fig. S112. HRMS spectrum of 2P (enlarged).
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Chemical Formula: C4,H1qCIN,*
Exact Mass: 217.0527
m/z: 217.0528 (100.0%), 219.0498 (32.0%),
218.0561 (13.0%), 220.0532 (4.1%)

Cl

Chemical Formula: C4,HgDCIN,*
Exact Mass: 218.0590
m/z: 218.0590 (100.0%), 220.0561 (32.0%),
219.0624 (13.0%), 221.0594 (4.1%)

Cl

Chemical Formula: C4,HgD,CIN,*
Exact Mass: 219.0653
m/z: 219.0653 (100.0%), 221.0624 (32.0%),
220.0687 (13.0%), 222.0657 (4.1%)

x10 6 |+ESI Scan (rt: 8,096 min) Frag=380,0V 2-2D.d

4,75+

4,5 218.0590

4,25
4
3,75
3,5
3,25

2,754
2,5
2,254
24
1,754
1,5
1,25
1
0,754
0,5

ol

100 200

Fig. S113. HRMS spectrum of 22P,
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Fig. $114. HRMS spectrum of 2%° (enlarged).
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Chemical Formula: C43H43N,0* Chemical Formula: C43H1,DN,0*
Exact Mass: 213.1022 Exact Mass: 214.1085
3P m/z: 213.1023 (100.0%), 214.1056 (14.1%) m/z: 214.1086 (100.0%), 215.1119 (14.1%)
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Fig. S115. HRMS spectrum of 3°.
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Fig. $116. HRMS spectrum of 3° (enlarged).
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Chemical Formula: C43H43N,O*
Exact Mass: 213.1022
m/z: 213.1023 (100.0%), 214.1056 (14.1%)

Chemical Formula: C3H,DN,O*
Exact Mass: 214.1085
m/z: 214.1086 (100.0%), 215.1119 (14.1%)

OMe

Chemical Formula: C43H44D,N,0*
Exact Mass: 215.1148
m/z: 215.1148 (100.0%), 216.1182 (14.1%)
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Fig. $117. HRMS spectrum of 3%°.
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Fig. $118. HRMS spectrum of 3%° (enlarged).
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Chemical Formula: C44HgN5*
Exact Mass: 226.1339
m/z: 226.1339 (100.0%), 227.1373 (15.1%),
4P 227.1310 (1.1%), 228.1406 (1.1%)

Chemical Formula: C44H;sDN3*
Exact Mass: 227.1402
m/z: 227.1402 (100.0%), 228.1436 (15.1%),
228.1372 (1.1%), 229.1469 (1.1%)
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Fig. $119. HRMS spectrum of 4°.
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Fig. $120. HRMS spectrum of 4° (enlarged).
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Chemical Formula: Cq4HgN3s*

Exact Mass: 226.1339
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Fig. $121. HRMS spectrum of 4%°,
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Fig. $122. HRMS spectrum of 4%° (enlarged).
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Cl

Chemical Formula: C44H45CIN5*
Exact Mass: 260.0949
m/z: 260.0950 (100.0%), 262.0920 (32.0%),
261.0983 (15.1%), 263.0954 (4.8%), 261.0920
(1.1%), 262.1017 (1.1%)

Cl

Chemical Formula: C14H4,DCIN;*
Exact Mass: 261.1012
m/z: 261.1012 (100.0%), 263.0983 (32.0%),
262.1046 (15.1%), 264.1016 (4.8%), 262.0983
(1.1%), 263.1079 (1.1%)
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Fig. S123. HRMS spectrum of 5°.
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Fig. $124. HRMS spectrum of 5° (enlarged).
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Cl Cl
Chemical Formula: C44H,5CIN5* Chemical Formula: C44H44DCINg*
Exact Mass: 260.0949 Exact Mass: 261.1012
m/z: 260.0950 (100.0%), 262.0920 (32.0%), m/z: 261.1012 (100.0%), 263.0983 (32.0%),
261.0983 (15.1%), 263.0954 (4.8%), 262.1046 (15.1%), 264.1016 (4.8%), 262.0983
261.0920 (1.1%), 262.1017 (1.1%) (1.1%), 263.1079 (1.1%)
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(70%) D Cl Cl
Chemical Formula: C14H43D,CIN;* Chemical Formula: C4H1,D3CINg*
Exact Mass: 262.1075 Exact Mass: 263.1137
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Fig. $125. HRMS spectrum of 5%°.
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Fig. $126. HRMS spectrum of 5%° (enlarged).
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Exact Mass: 156.0808 Exact Mass: 157.0871
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Fig. $127. HRMS spectrum of 6°.
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Fig. S128. HRMS spectrum of 6° (enlarged).
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Fig. $129. HRMS spectrum of 7°.
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Fig. $130. HRMS spectrum of 7° (enlarged).
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D Chemical Formula: CgH14S* Chemical Formula: CgH1oDS*
(71%) Exact Mass: 139.0576 Exact Mass: 140.0639
m/z: 139.0576 (100.0%), 140.0610 m/z: 140.0639 (100.0%), 141.0673
8P (8.7%), 141.0534 (4.5%) (8.7%), 142.0597 (4.5%)
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Fig. S131. HRMS spectra of 8° in a) MeCN-H,0 and b) MeOH-H,0.
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Fig. S132. HRMS spectra of 8P (enlarged) in MeCN-H,0 (a) and b) MeOH-H,0 (b-d).

Compound 8P was oxidized or decomposed during recording of the HRMS spectrum nevertheless of
the operating conditions. We can tentatively assign the observed MS data by formation of sulphoxide
derivative that depended on the recording conditions. Possible assignment of the observed peaks is

given below.
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S/

I

O
H+

Chemical Formula: CgH1,0S*
Exact Mass: 155.0525
m/z: 155.0526 (100.0%), 156.0559
(8.7%), 157.0484 (4.5%)

§/
(0]
Na*

Chemical Formula: CgH1gNaOS*
Exact Mass: 177.0345

m/z: 177.0345 (100.0%), 178.0379
(8.7%), 179.0303 (4.5%)

IS/
o
H+
S/
I
(e}

Chemical Formula: C1gH210,S5*
Exact Mass: 309.0977

m/z: 309.0978 (100.0%), 310.1012 (17.3%),
311.0936 (9.0%), 310.0972 (1.6%), 312.0969

(1.6%), 311.1045 (1.4%)

©/\§/
(6]
Na*
©/\§/
(@]

Chemical Formula: C4gH20Na02S,*

Exact Mass: 331.0797

m/z: 331.0797 (100.0%), 332.0831 (17.3%),
333.0755 (9.0%), 332.0791 (1.6%), 334.0789

(1.6%), 333.0865 (1.4%)

Doubly charged ions in Fig. S132d are likely obtained by combining the above-listed structures.

@(\S/
ICI)
D H*

Chemical Formula: CgH1oDOS*
Exact Mass: 156.0588
m/z: 156.0588 (100.0%), 157.0622
(8.7%), 158.0546 (4.5%)

@(\8/
D Na*

Chemical Formula: CgHgDNaOS”*
Exact Mass: 178.0407
m/z: 178.0408 (100.0%),
179.0441 (8.7%), 180.0366 (4.5%)

e}

S/

(e}

S/

O

.4

Chemical Formula: C1gH20D0,S;*
Exact Mass: 310.1040
miz: 310.1041 (100.0%), 311.1074 (17.3%),
312.0999 (9.0%), 311.1035 (1.6%), 313.1032
(1.6%), 312.1108 (1.4%)

Chemical Formula: C1gH1gDNa0,S5*
Exact Mass: 332.0860
miz: 332.0860 (100.0%), 333.0894 (17.3%),
334.0818 (9.0%), 333.0854 (1.6%), 335.0852
(1.6%), 334.0927 (1.4%)

85



H H M
N \n/ N N\n/
\n/ + @E O pt
D (6] O H D
(61%) Chemical Formula: CgH1oNO* Chemical Formula: CgHgDNO*
Exact Mass: 136.0757 Exact Mass: 137.0820
9P m/z: 136.0757 (100.0%), 137.0791 (8.7%) m/z: 137.0820 (100.0%), 138.0854 (8.7%)

x10 6 |+ESI Scan (rt: 4,502 min) Frag=380,0V 9_D_raz2.d

1.1 136.0759

0,6
0.5
0.4
0.3
0.2

337.0557
0,14

420.2585
L

100 200 300 400 500 600 700 80 900 1000 1100 1200 1300 1400
Counts vs. Mass-to-Charge (m/z)

Fig. $133. HRMS spectrum of 9°.
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Fig. $134. HRMS spectrum of 9° (enlarged).
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8. Computational study

8.1 General remarks

D-source donor group. Both the amino and the carboxylic groups in cysteine might be involved in the
D-transfer. Attempts to locate a low-lying transition state that would lead to deuteration via the thiol
group were unsuccessful.

Two isomers of the N,S-coordinated cysteine that are important for the identification of the most
stable isomer of the examined complexes are given in Fig. S67. The main difference is in the position
of the carboxylic group that might be positioned equatorially or axially. Usually the equatorial position
is lower in energy than the axial position. However, the isomer with the axial orientation can be lower
in energy due to the intramolecular interactions and possible D-transfer between the functional
groups in two coordinated cysteines, or between the coordinated and the non-coordinated cysteine.

Fig. $135. Main isomers of the N,S-coordinated L-cysteine.

D,
cooD  DOOC
s_ N N, /S/YCOOD
Pd Pd_ p.N
7N /N8
N s
D,

DOOC S cl
trans-Pd(Cys®), PdCI(Cys?®)(Cys*D)
0 kcal mol! (gas phase) isomer 1
0 kcal mol! (PCM propanoic acid) 0.2 keal mol”' (gas phase)
0 kcal mol'' (PCM DMF) 3.2 kcal mol™' (PCM propanaic acid)

7.2 keal mol (PCM DMF)

S\ /S S\ /S/YCOOD
/Pd\ Pd\ +D3N
N N N Cl
DOOC D, D, COOD DOOC D,
cis-Pd(Cys?P), PdCI(Cys®P)(Cys*P)
0.4 kcal ma™ (gas phase) isomer 2
-1.5kcal mol'" (PCM propanoic acid) -5.5 keal mol™" (gas phase)
-1.9 kcal mol! (PCM DMF) -0.5kcal mol! (PCM propanoic acid)

4.2 kcal mol”! (PCM DMF)
Chart S1. Relative free energies (in kcal mol?) for isomers of the monomeric Pd(Cys3®), and
PdCI(Cys3P)(Cys*P).
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8.2 Deuteration of the monocyclopalladated cysteine complex

Milling of the dimeric monocyclopalladated azobenzene M1-Cl with Cys*® in excess gives the cysteine
complex that can be present in two isomeric forms M1-1 and M1-2 (Scheme S1). The most stable
monomeric isomer M1-1 has Cys3P bound via the deprotonated thiol group trans to the azo group and
the amino group trans to the palladated carbon atom. The other isomer M1-2 is 5.9 kcal mol? less
stable than M1-1. Monopalladated complexes M4-Cl and M5-Cl are monomeric with one DMF ligand
bonded to the Pd center. Their reaction course is expected to be similar to that of M1-Cl. The main
difference is in formation of M4 or M5 where DCl and DMF are liberated from M4-Cl or M5-Cl.

@ N ligand ’ J@ ’ @
N @ exchange ) ),

12

.l e
7 /Pd\ +2 CysP DN \s S \ND2
5 ~ClI 2 - CyS4D'DC| DOOC)\/ ‘\(
M1-Cl M1-1 M1-2 COOD
0.1 kcal mol! (gas phase) 0 kcal mol™! (gas phase) 5.9 kcal mol™ (gas phase)
(13.2 kcal mol”!, PCM DMF) (0 kcal mol”!, PCM DMF) (6.1 kcal mol”!, PCM DMF)

Scheme S1. Ligand exchange in chloride monocyclopalladated azobenzene complexes.

e Study of the D-transfer

Our previous computational data obtained using B3LYP functional showed good qualitative agreement
with the experimental findings, agreed best with the experimental spectroscopic data, and showed
robustness for studies related to the palladated azobenzenes.® However, in order to test several other
methods for the present computational study, we have used additional methods apart from the
B3LYP-D3/6-311+G**/SDD(Pd)/gas phase (data presented in Table S2):

1) a small basis set (6-31G* instead of 6-311+G**/SDD(Pd)): B3LYP-D3/6-31G*/SDD(Pd)/gas phase;

2) no empirical dispersion correction (“only” B3LYP instead of B3LYP-D3): B3LYP/6-
311+G**/SDD(Pd)/gas phase;

3) a more modern basis set (def2tzvp instead of 6-311+G**/SDD(Pd)): B3LYP-D3/def2tzvp/gas phase;

4) a more modern functional (wB97x-D instead of B3LYP-D3): wB97x-D/6-311+G**/SDD(Pd)/gas
phase;

5) including solvation effects modeled with the polarizable continuum model (PCM) for DMF: B3LYP-
D3/6-311+G**/SDD(Pd)/PCM(DMF);

6) including solvation effects modeled with the polarizable continuum model (PCM) for propanoic
acid: B3LYP-D3/6-311+G**/SDD(Pd)/PCM(propanoic acid).

Smaller basis set 6-31G* if compared to 6-311+G** resulted in differences in the calculated free
energies that were not systematic (+3.5 kcal mol?t). We find the values obtained by the larger basis
set more appropriate. Def2tzvp values were similar to the 6-311+G** values with the exception of the
higher free energies for the species involved in a D-transfer from DCl and Cys®°-DCl. Functional wB97x-
D produced data that were mostly by up to 2 kcal mol? higher than for B3LYP-D3. No included
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dispersion ended in much higher energies than other methods and was considered not appropriate.
All methods gave the same order of preference for the examined D-sources: Cys*®-DCl > Cys*® > DCI (If
present) > AcOD.

Furthermore, considering the work by B. S Pladevall et al.,?° we have performed the calculations using
PCM modelling. This was regarded as a rigorous computational check of the medium influence on the
computed results. We could not calculate the dielectric constant of the mixtures we have used
(applying the approach used by Pladevall et al.) as dielectric constants of all components in our
systems are not available. Thus, two solvents, propanoic acid and DMF, were chosen as examples to
study the effect that the medium can make on the results. Obtained results indicate that the choice
of the medium changes the difference between free energies of the transition states for the
deuteration of M1-1 using Cys*® and Cys*®-DCl as D-sources. In the propanoic acid, D-source order of
preference determined in the gas phase is still preserved. Medium should be DMF (or similar) to
achieve similar free energies of transition states for deuteration using Cys*® and Cys®°-DCl as D-sources
(Cys*®-DCl is still slightly preferred).

35 — 34 .4 D-transfer from:

] — \ ——DCI

- / % —— ACOD

30 - / \ COOD group in:

— Cys*®DCI

—— Cys™ with D-transfer
from M1-1 to Cys*®

—— neutral Cys®

ND," group in:
Cys*DCI

—— Cys* with D-transfer
from M1-1 to Cys*®

—— zwitter-ionic Cys*

N
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o
o
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e N
3 \-14.6
15 .
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Fig. S136. Free-energy profile of D-transfer to M1-1 from various D-sources using data obtained by
PCM for DMF. Free energies relative to M1-1 (in kcal mol™). Reaction of M1-1 with DCl as a D-source
is not viable as DCl readily reacts with Cys*® and forms Cys*’-DCI (Cys®°-DCI + DCl - Cys®*°-DCl, AG = -
11.2 kcal mol?).
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Table S2. Free energies for the pre- (R) and postreaction (P) complexes and the transition states (TS) for the D-transfer to M1-1 from various D-sources using
different computational methods. Reported transition states are obtained by optimization starting with the geometry of the default method. R and P are
obtained by IRC calculations followed by geometry optimization. Free energies are listed relative to the free energy of M1-1 for each method (in kcal mol?).

Functional> B3LYP-D3 B3LYP-D3 B3LYP-D3 wB97x-d B3LYP-D3 B3LYP-D3 B3LYP
Basis set—> 6-311+G** 6-31G* def2tzvp 6-311+G** 6-311+G** 6-311+G** 6-311+G**
/SDD(Pd) /SDD(Pd) /SDD(Pd) /SDD(Pd) /SDD(Pd) /SDD(Pd)

D-source, Donor group, Speciesd, | Gas phase Gas phase Gas phase Gas phase PCM (propanoic acid) PCM (DMF) Gas phase
DCI DCI R -0.8 -1.0 -0.3 -0.4 0.9 1.3 4.9

TS 23.6 21.8 25.6 25.9 16.0 12.4° 29.8

P 13.5 11.9 15.2 15.1 7.1 7.0 19.7
Cys*P-DCI COO0D R -12.0 -9.1 -9.2 -10.6 -5.5 -0.6 0.9

TS 9.8 10.8 12.1 14.0 14.2 18.1 24.7

P 8.4 10.2 10.2 8.3 10.8 11.0 19.3
Cys*°-DCl NDs* R -4.3 -1.7 -1.6 -4.0 -1.7 -1.4 9.2

TS 11.1 12.8 13.9 14.7 15.8 18.2 26.8

P 5.6 7.5 8.0 7.8 11.4 13.4 16.1
Cys*°(neutral) COOD R 0.7 2.5 1.7 2.5 4.1 6.3 9.8

TS 17.5 18.5 17.7 21.4 20.3 22.0 27.6

P 14.9* -4.4 -2.8 -2.0 0.2 16.4* 4.7
Cys*®(neutral) | COOD R -7.8 -8.8 -6.6 -6.5 -3.0 -3.1 4.6

TSP 18.9 16.7 20.2 23.2 19.0 18.4 34.5

P 18.6 16.6 19.8 22.6 16.6 13.2 32.9
Cys*P(zwitter) NDs* R -2.7 -3.0 -1.6 -1.9 -2.7 -3.2 10.4

TS 25.0 23.4 26.3 28.7 25.0 24.6 39.9

P 21.6 19.9 22.9 23.6 22.1 20.6 34.0
Cys*°(zwitter) | NDs* R -6.6° -8.4¢ -6.1° -4.6° -5.8¢ -5.8¢ 5.9¢

TSP 24.1 23.6 24.6 27.8 22.6 20.9 39.7

P 22.8 22.3 23.0 25.5 19.8 17.4 36.2
AcOD AcOD R -5.3 -7.6 -5.1 -4.4 -1.5 0.8 1.8

TS 28.8 25.3 29.1 32.2 29.2 34.4 38.2

P 22.6 19.3 23.0 24.7 23.6 21.4 32.1

3DCl is not present in the free form. Cys®® + DCl - Cys®*P-DCl, AG = -11.2 kcal mol ™. ®Intermolecular D-transfer from the coordinated Cys3® to the non-coordinated outer Cys*?
occurred spontaneously by going from R to TS. Intermolecular D-transfer from the coordinated Cys3® to the non-coordinated outer Cys*® occurs spontaneously in the
examined geometry. YIntermolecular D-transfer from the coordinated Cys3P to the non-coordinated outer Cys* occurs via transition state located at 6.4 kcal mol™.
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We note that throughout this study optimization of the products after IRC calculations sometimes
ended in geometries that were high in energy but still located and confirmed by vibrational analysis
as minima. One example of this is the product of the D-transfer to M1-1 by the COOD group of the
neutral Cys*® (geometries are marked with an asterisk (*) in Table S2). In the gas phase and in PCM-
DMF the optimized product is a species that has the ionic structure [Pd(Cys3P)(1°)](Cys3P) with one
Cys3P anion not coordinated to Pd. Optimization by other tested methods lead (via this ionic species)
to the complex with two coordinated Cys®® (one O-monodentately and the other N,S-bidentately) to
the Pd center.

Calculated data for the deuteration of the complexes M1-1 and M1-2 by different D-sources is given
in Table S3. Cys®*®-DCl is the preferred D-donor. DCl most likely bonds to excess Cys*? forming Cys*P-DCl
which is predicted as the best D-source. A preference to the D-transfer to the azobenzene from the
COOD group rather than the NDs* group of the cysteine is predicted.

Table S3. B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- (R) and postreaction (P)
complexes and the transition states (TS) for the D-transfer to the monopalladated complexes M1-1
and M1-2 using various D-sources. Free energies relative to M1-1 (in kcal mol?).

D-source> | Cys*®-DCl | Cys*"-DCI | Cys*® (neutral) | Cys®° (zwitter) | DCI AcOD
Donor group-> | COOD NDs* COOD | COOD | ND3* | NDs3* DCl AcOD
M1-1
Prereaction complex (R) -12.0 -4.3 0.7 -7.8 -2.7 | -6.6** -0.8 -5.3
Transition state (TS) 9.8 11.1 17.5 | 18.9* 25.0 24.1* 23.6 28.8
Postreaction complex (P, 17 8.4 56| 149 | 186* | 21.7| 228 | 135 226
coordinated via N(azo) to Pd)
M1-2
Prereaction complex (R) 2.7 0.9 5.7 - 11.0 3.0%* 2.8 1.7
Transition state (TS) 9.8 14.6 18.3 - 27.0 23.3* 17.7 20.8
5 D
Postreaction complex (P, 1 2.0 86| 13.7 T 199 189%| -131| -1.8

coordinated via N(azo) to Pd)
* Species in which the intermolecular D-transfer from the coordinated Cys®® to the non-coordinated outer Cys*®
occurred. ** Intermolecular D-transfer occurs spontaneously in the examined geometry.

D-transfer leads to formation of the site-selectively monodeuterated azobenzene 1P coordinated at
the Pd center. Release of the azobenzene is expected by ligand exchange reaction in which cysteine
(present in excess), chloride or (less likely) acetate coordinates to the Pd center.

8.3 Deuteration of the dipalladated complex

Dicyclopalladated complexes D1-Cl is a monomer with one DMF ligand bonded per Pd center trans to
the palladated carbon. Structure of the bridged dipalladated complex contains one five-membered
cyclopalladated ring (in further text: 5-ring) and one six-membered palladated ring (in further text: 6-
ring).
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Milling of the chloride dicyclopalladated azobenzene D1-Cl with Cys*® gives first the planar cysteine
dipalladated complex. Its most stable monomeric isomer D1-1 has the Cys®® bound to each Pd center
via the deprotonated thiol group trans to the azo group and the amino group trans to the palladated
carbon atom. Other isomers were located at least 5 kcal mol™! above D1-1.

D1-1 transforms to the bridged dipalladated complex that is more stable. Numerous isomeric forms
of the bridged complex can be envisaged. Two most stable isomers B1-1 and B1-2 (Scheme S2) have
two Cys®® ligands bound to Pd centers via the deprotonated thiol group and the amino group. A
deprotonated thiol group of one Cys3P is bridging two Pd centers and its amino group is bound to the
Pd center involved in the 5-ring. The other Cys3® is N,S-bidentately bound to the Pd center not involved
in the 5-ring. B1-1 and B1-2 differ only in the coordination mode of the non-bridging Cys3?

D1-Cl could also form a Cl-bridged complex, Scheme S2, but its main isomers B1-Cl-1 and B1-Cl-2 are
less stable from D1-1 and are thus not formed.

| cl !

5 \ _O(DMF) !

: P‘{/ E ligand S N ©\

: | exchange d \G| DOOC Pd

. N P
: N~ L — /NP / \
i ,\,dJ@ - +3Cys® ooc N, s * § o
- . -2DMF
| (DMF)O~™ | lcow 1000D
S Cl D1-Cl;  .cys*®DCl B1-CI-1 D3N B1-Cl-2 ‘D3N
5.7 kcal mol™! (gas phase) 4.9 kcal mol™" (gas phase) 5.8 kcal mol™! (gas phase)
(29.9 kcal mol™!, PCM-DMF) (7.0 kcal mol”!, PCM-DMF) (16.6 kcal mol”!, PCM-DMF)
. +4 Cys*P
I/ghand - 2 DMF
exchange |, cysopel
COOD
s T
J@ s J@
\N isomerization / L Pd DOOC / | P d
N~ E—— +
\ DOOC ND, {
DN Pd
)\/S D1-1 B11  COOD B1-2 cooD
DOOC 0.9 kcal mol™" (gas phase) 0 kcal mol™! (gas phase) 0.1 kcal mol™! (gas phase)
(1.4 kcal mol”!, PCM-DMF) (0 keal mol™!, PCM-DMF) (2.6 kcal mol”!, PCM-DMF)

S0 P
L _pd Dooc L _Pd
/ 0 AN + / O/ N
ND, S s S
DOOC
DO DO

B1-3 ND, B1-4 ND,
24.9 keal mol™ (gas phase) 33.5 kcal mol™ (gas phase)
(20.0 kcal mol™!, PCM-DMF) (24.7 kecal mol”!, PCM-DMF)

Scheme S2. Some of the possible complexes formed in the reaction of D1-Cl with Cys®®. Free energies
relative to B1-1 (in kcal mol ). Other isomers of the planar cysteine dipalladated complex that have a
different mode of chelate binding of Cys3P than D1-1 are at least 15 kcal mol™ less stable than D1-1 in
the gas phase. Other isomers of the bridged cysteine dipalladated complex (ND-bridged and O-bridged
by the COO group) are 20 kcal mol™ or more less stable than B1-1 in the gas phase.
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e Study of the D-transfer

Due to the structure of the bridged complex two paths to the dideuterated azobenzene 1?° are
possible and start with the D-transfer to either the 5- or the 6-ring. In addition, considering the
asymmetric structure of the bridged complex, D-transfer can occur on two sides of the azobenzene
ligand. D-transfer occurring opposite from the chloride bridge is referred to as the inside D-transfer
whereas the D-transfer occurring at the same side as the chloride bridge is the outside D-transfer. Due
to steric reasons, this could only be evaluated for the path Il.

The deuteration study of the D-transfer to the monocyclopalladated azobenzene described in detail
in the preceding section 8.2, showed that the preferred D-source for the D-transfer in the presence of
chlorides is Cys®*P-DCI. Therefore, hereafter only Cys*’-DCl along with DCl as D-sources for deuteration
of the dipalladated complexes were studied.

e D-transfer to the planar dipalladated complex D1-1 — path I, 1 D-transfer

D-transfer from the D-source to the planar complex D1-1 yields the monocyclopalladated complex
M1P-2 that is monodeuterated in the ortho position to the azo group. Out of the examined reactions,
transition state for the D-transfer from the COOD group in Cys*"-DCl is the lowest in energy, Table S4.

Table S4. PATH I: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- and postreaction
complexes and the transition states for the first D-transfer to D1-1. Free energies relative to B1-1 (in
kcal mol?). Values in parentheses were calculated using PCM modelling of DMF.

D-source> | Cys*-DCl | Cys*-DCl DCI

Donor group—> CO0OD NDs* DCI
Prereaction complex -17.6 (-6.2) -15.6 15.3
Transition state 9.0 (19.8) 10.8 24.0
Postreaction complex -3.5 (6.6) 3.3 -8.2

e D-transfer to the bridged dipalladated complexes — path I, 15 D-transfer

D-transfer from the D-source to the 6-ring of the bridged complex yields the monocyclopalladated
complex M1P-2 that is site-selectively monodeuterated in the ortho position to the azo group. One Pd
is eliminated. It should be noted that postreaction complexes that are obtained from either of the
isomers of the precursor (i.e. B1-1 and B1-2) have the coordination mode found in M1°-2.

Out of the examined reactions, the transition state for the D-transfer from the COOD group in
Cys*®-DCl is the lowest in energy, Table S5.

Here, along with other D-sources, the COOD group in the bridge between two Pd centers might also
act as the D-source. However, calculated data show that the bridged cysteine dipalladated complexes
B1-3 and B1-4 are high in energy making this option the most demanding deuteration path that is not
followed, Table S5.
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Table S5. PATH I: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- and postreaction
complexes and the transition states for the first D-transfer to the bridged complexes. Free energies
relative to B1-1 (in kcal mol?). Values in parentheses were calculated using PCM modelling of DMF.

D-source-> | Cys**-DCl | Cys*-DCl DCl | Cys®0 (bridge)® | Cys*® (coord) | Cys®° (coord)
Donor group—> COOD NDs* DCl COOD COo0D NDs*

B1-1° B1-3° B1-CI-1°
Prereaction complex -21.4 (-7.2) -17.2 -6.1 249 15.9 4.9
Transition state -0.6 (9.6) 2.7 20.6 37.0 30.6 15.3
Postreaction complex -7.6 (-2.4) -16.0 | -17.0 11.6 25.1 10.9
B1-2° B1-4° B1-CI-2°
Prereaction complex -15.8 (-5.0) -8.7 -0.6 33.5 6.8 13.8
Transition state -1.9 (10.7) 2.3 12.2 40.1 31.9 25.5
Postreaction complex -35.7 (-7.7) -28.8 | -25.8 14.6 28.0 21.8

2Intramolecular D-transfer from the bridging COOD group. ®°Mother complex.

High TS energies for the D-transfer from the monodentate S-coordinated Cys*® (Table S5) are
calculated for the complexes with the chloride bridge between two Pd centers B1-Cl-1 and B1-Cl-2
(see Scheme S2).

The monopalladated cysteine complex is formed after elimination of PdCI(Cys3P)(Cys*?). Less stable
ortho-monodeuterated isomer M1P-2 is formed due to the geometry of the bridged dipalladated
reactant. Data for the D-transfer to this isomer are in Table S3. The preferred D-source is the COOD
group in Cys®*°-DCI.

e D-transfer to the monodeuterated monopalladated complexes — path I, 2" D-transfer

M1P-2 is further deuterated as described for the M1-1 and yields the azobenzene 1?° dideuterated at
two ortho positions to the azo group.

Table S6. PATH I: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- and postreaction
complexes and the transition states for the second D-transfer. Free energies relative to B1-1 (in kcal
mol?). Pd is eliminated as PdCI(Cys®?)(Cys*®). We note that same geometries were listed in Table S3,
however here we report monodeuterated monopalladated species and their energies are calculated
with respect to B1-1. Values in parentheses were calculated using PCM modelling of DMF.

D-source—> | Cys**-DCI Cys**-DCI | DCI
Donor group—> | COOD NDs* DCI
B1-1* / M1P-2%*
Prereaction complex -12.9 (-3.6) -146 | -11.6
Transition state -5.7 (6.7) -0.9 3.3
Postreaction complex (1P coordinated via N(azo) to Pd) -13.6 (-2.5) -6.9 | -27.5
D1-1* / M1P-1**
Prereaction complex -27.5 (-11.7) - -
Transition state -5.7 (7.1) - -
Postreaction complex (1° coordinated via N(azo) to Pd) -8.0 (-0.04) - -

*Starting complex entering the first D-transfer. **Complex entering the second D-transfer.
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Fig. S136. PATH I: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase data for D-transfers to D1-1, B1-1 and B1-
2 from Cys*?-DCI. Pd is eliminated as PdCI(Cys3P)(Cys*P).

e D-transfer to the bridged cysteine dipalladated complexes — path Il, 15 D-transfer

The first D-transfer from the D-source to the 5-ring of the bridged dipalladated cysteine complex B1-
1 yields the bridged monopalladated complex P4-1 that has the azobenzene ligand site-selectively
monodeuterated in the ortho position to the azo group, Scheme S4.

Out of the examined reactions, the transition state for the D-transfer from the NDs* group in Cys*’-DCl
to the 5-ring in B1-1 is the lowest in energy, Table S7. This reaction gives P4-1.

Table S7. PATH II: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- and
postreaction complexes and the transition states for the first D-transfer. Free energies relative to B1-
1 (in kcal mol?). Values in parentheses were calculated using PCM modelling of DMF.

Mother complex—> B1-1 B1-2
D-source-> | Cys®°-DCI Cys*P-DCI DCI Cys*°-DCl Cys*®-DCI DCl

Donor group—> CO0OD NDs* DCI COo0oD NDs* DCI
Inside D-transfer
Prereaction complex -9.5(-3.2) | -21.3(-8.9) -0.0 | -11.7 (-1.9) -15.4 -0.6
Transition state 7.0(10.4) | 1.4(12.1) 124 | 6.2(14.5) 11.3 11.3
Postreaction complex 2.2 (2.6) -1.6 (7.4) 1.4 -6.3 (2.5) -12.4 -11.4
Outside D-transfer
Prereaction complex -13.8 (-3.8) -6.9 -0.8 -10.4 -3.7 3.3
Transition state 6.4 (16.3) 6.8 13.6 10.6 13.0 18.0
Postreaction complex -3.0 (6.0) -3.3 8.0 4.9 2.1 13.9

The first D-transfer ends in the intermediate dipalladated bridged complex 14-1 that has the ionic
structure with the empty coordination place at one Pd center and cysteine nested between two Pd
centers. This could be filled by Cys* and CI yielding two possible intermediates that can enter the
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second D-transfer, 15-1 and 15-2, respectively (Scheme S3). The isomer of 15-1 with the S-coordinated
monodentate Cys*® in addition to the two S,N-chelately bonded Cys®® is the most stable form, Table
S8. Analogous is observed for the intermediates 14-2, 15-4, 15-5 and 15-6 that are formed from B1-2.

Table S8. B3LYP-D3/6-311+G**/SDD(Pd)/gas phase relative stabilities for the main isomers of the
bridged intermediates that could be formed by deuteration of the bridged dipalladated complex by D-
transfer to the 5-ring. Free energies relative to B1-1 (in kcal mol™?).

COOD

@ =none, A =Cl (14-1)
= Cys*P, A =Cl (15-1)
= CI, A = none (15-2)

[;\ N/
g \ O

COOD
@ =none, A =Cl (14-2)
= Cys*P, A =CI (15-4)
= CI, A = none (15-5)

[ 1 N/
o\ O

ol SN e
S COOD DzN
DOOC 1524 DOOC 1551 cooD
Functional/donor groups in group o Grel (kcal mol™)
S/SD ND2/ND3 CO0/CcooD | CI Complex B1-1* Complex B1-2*
- - - anion 14-1 2.5 14-2 -k
S-coord NDs COOD anion 15-1-1 -30.3 15-4-1 -18.8
SD-coord ND2 COoOoD anion 15-1-2 -14.9 15-4-2 -5.4
SD-coord ND3 COO0 anion 15-1-3 -16.5 15-4-3 -12.7
SD ND2-coord COOD anion 15-1-4 -18.6 15-4-4 -6.7
SD ND3 COO-coord anion 15-1-5 -14.2 15-4-5 -12.5
- - - coord 15-2 -4.8 15-5 -11.7
- - - coord 15-2-1 -17.0 15-5-1 -5.4

* Mother complex. **Optimization ends in the coordinated CI" unless CI" is far from the empty coordination site.

Complex Grel (kcal mol?)
o N,,N@ 17-1 2.9
Pa \ 0= I8-1 2.7
i\._Pd-@
DO i
ND, @ =Cl, @ = S-coord Cys®P (17-1)
= S-coord Cys®®,  =cCI (18-1)
[ :LN,N@
Complex Grei (kcal mol?)
\ /Pd—O 17-2 -10.7
@ -=cCr, @ = S-coord Cys?P (17-2) 18-2 -11.4

)\LNDZ

= S-coord Cys*P =CrI
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Taking above-mentioned details into account, located relevant transition states for the second D-
transfer on the path Il are listed in Table S9. Out of the examined reactions, deuteration of the
intermediate 15-3 (TS at -3.0 kcal mol?) is the lowest in energy. Transition state for the D-transfer to
the intermediates 15-1 and 15-5 are located at -2.0 and -2.1 kcal mol™.

Table S9. PATH Il: B3LYP-D3/6-311+G**/SDD(Pd)/gas phase free energies for the pre- (R) and
postreaction (P) complexes and the transition states (TS) for the second D-transfer. Free energies
relative to B1-1 (in kcal mol). Donor group that is involved in the D-transfer is grey-shaded. Chloride
that bonds to the Pd center is marked with “coord”. Values in parentheses were calculated using PCM
modeling of DMF.

Mother complex—> B1-1 B1-2
Functional/donor groups
5/SD | ND2/NDs | coo/cooD | cr R [ s | p | R [ 15 ] P
D-source: coordinated Cys*” 15-1 | 15-4
S-coord NDs COOD anion -19.0 5.0 -7.8 -5.8 5.2 -41.5
S-coord ND3 coobD anion -29.4 -2.0 -6.6 -14.4 4.9 -14.6
(-16.6) | (5.5) (-72) | (-63)| (11.9) | (-10.7)
SD-coord | ND3 CO0 anion -13.5 14.2 -0.6 | -12.7 7.8 -22.2
SD-coord | ND2 coobD anion -14.9 16.9 -13.4* -5.4 14.8 -37.3*
SD NDs3 COO-coord | anion -9.7 11.4 1.1 -3.0 13.2 -23.8
SD ND,-coord | COOD anion -14.2 14.9 2.5 -6.7 11.7 3.5
D-source: non-coordinated Cys®” 15-2 | I5-5
SD NDs3 COO0 coord -18.4 4.2 -9.3 -6.1 5.8 -34.1
SD ND2 coobD coord -17.5 3.5 -14.3 -12.4 -2.1 -38.6
(-5.1) | (14.3) (-6.4) | (-0.6) | (12.4) | (-15.3)
D-source: non-coordinated Cys°®* formed by an
. 15-3 15-6
intermolecular D-transfer
SD NDs3 COOD coord -25.2 -3.0 -11.8 -12.2 2.8 -34.8
(-10.2) | (8.5) (-26) | (1.0)| (13.9) | (-14.21)
D-source: coordinated Cys*” 17-2 | 18-2
S-coord NDs COOD coord -1.9 25.6 12.7 | -10.7 16.3 3.2
S-coord ND3 coobD coord 6.4 33.1 9.2 -13.0 20.2 13.2

* Postreaction complex optimization leads to the D-transfer from SD to COO™ group ending with three S-
coordinated cysteines with the ND2 and COOD groups.

Transition state for the intermolecular D-transfer from the coordinated Cys3" to the non-coordinated
Cys® to form R5-3 or R5-6 could not be located in the gas phase. All attempts in the gas phase ended
in spontaneous transfer from the COOD group of the coordinated Cys®° to either ND, or COO" group
in the non-coordinated Cys*? and thus in the formation of R5-3 or R5-6 (and further via TS5-3 to P5-3
or via TS5-6 to P5-6, respectively).

Analogous D-transfer from the COOD group of the coordinated Cys3® to the ND, group in the non-
coordinated Cys*? in R5-2 or R5-5 could not be achieved in the gas phase. Only D-transfer via TS5-2 or
TS5-5 and formation of P5-2 or P5-5 was achieved.

The first D-transfer of the path Il occurs via the transition state that is higher in energy than the
transition state for the second D-transfer. Again, the second D-transfer produces the azobenzene 1%°
dideuterated at two ortho positions to the azo group and coordinated to the Pd center.
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Scheme S3. PATH II: Route from B1-1 to 1?°. Analogous species that are obtained from B1-2 and differ
only in the coordination mode of one Pd center are not drawn but only marked in parentheses.
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Fig. S138. Free-energy profiles for deuteration of D1-1, B1-1 and B1-2 using data in the gas phase and PCM-DMF.
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8.4 Deuteration of the palladated complexes with Ala3®

(0]
Pd *DaN
s /N8
N \O o) 0 (o) Cl
2
trans-Pd(Ala®P), PdCI(Ala%P)(Ala®P)
0 kcal mol™' (gas phase) isomer 1
(0 kcal mol!, PCM DMF) 3.0 kcal mol™ (gas phase)
(8.9 kcal mol”", PCM DMF)
(0]
(0] O (6]
*D3N
FARAN A 3
N N N \CI
D D D,
cis-Pd(AlaZP), PdCI(Ala?P)(AlaP)
10.1 kcal mol’! (gas phase) isomer 2
(0.6 kcal mol”!, PCM DMF) 5.4 kcal mol™' (gas phase)

(8.5 kcal mol”’, PCM DMF)
Chart S3. Relative free energies (in kcal mol?) for isomers of the monomeric Pd(Ala?®), and
PdCI(Ala?°)(Ala3P).

Milling of the dimeric monocyclopalladated azobenzene M1-Cl with Ala3® in excess gives the alanine
complex M1-Ala?®. The most stable monomeric isomer of M1-Ala?®, M1-Ala?°-1 (Scheme S4), has
Ala?® bound via the deprotonated carboxylic group trans to the azo group and the amino group trans
to the palladated carbon atom. The other isomer M1-Ala?°-2 is 2.4 kcal mol* less stable than M1-
Ala?®-1 in the gas phase.

. @\ _N @\ N
©\N”N - ligand N\ J@ N\ J@
\ . exchange _Pd Pd

172 | %, P T 2AR® o \NDQ DoN” \o
| 2 Cl 2 -Ala*®DCI o)\(
Lo N ‘ 0
M1-AlaZP-1 M1-Ala?P-2
0 kcal mol™” (gas phase) 2.4 kcal mol™ (gas phase)

(0 kcal mol’, PCM-DMF) (1.6 kcal mol-", PCM-DMF)

Scheme S4. Ligand exchange in chloride monocyclopalladated azobenzene complexes with Ala3P,

Milling of the chloride dicyclopalladated azobenzene D1-Cl with Ala3® in excess gives first the planar
chelate alanine complex D1-Ala?®. The most stable monomeric isomer of D1-Ala?®-1 has the Ala®®
bound to each Pd center via the deprotonated carboxylic group trans to the palladated carbon and
the amino group trans to the azo group, Scheme S5. The other isomer D1-Ala?’-2 is by 6.2 kcal mol?*
less stable than D1-Ala?®-1. In contrast to the D1-1, the planar D1-Ala?® does not transform to the
bridged complex B1-Ala®®. This agrees with our previous data for bonding of amino acids by the
palladated complexes®3.
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Scheme S5. Ligand exchange in chloride monocyclopalladated azobenzene complexes with Ala3?

We note that the mono- and dipalladated alanine complexes were prepared but could not be purified
and fully characterized due to their extremely low solubility.

e Study of the D-transfer

Calculated data for the deuteration of the complex M1-Ala® are given in Table S8. Ala3"-DC| was used
as the D-donor. Data show that the deuteration of the azobenzene is quite unfavorable if compared
to the analogous reaction with Cys*°-DCl (Table S1) which agrees with the experimental findings.
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Table S10. Free energies for the pre- (R) and postreaction (P) complexes and the transition states (TS)
for the D transfer from Ala3"-DCl to the palladated complexes with L-alanine. Free energies relative
to M1-Ala?°-1 for the monopalladated and D1-Ala?®-1 for the dipalladated complexes (in kcal mol™).
Values in parentheses were calculated using PCM modelling of DMF.

D-source-> | Ala3°-DCI Ala3P-DCI
Donor group—> | COOD NDs*

M1-AlaZP-1

R -0.8 (1.5) 7.0
TS 17.7 (20.7) 22.0
P 13.6 (17.3) 16.0
D1-Ala?-1

R -12.4(2.0) | -13.9 (21.0)
TS 17.8(20.3) | 14.8 (22.2)
P 15.4 (18.7) | 14.1(-5.5)
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