Supporting information

Both Layered Trihydroxide Hollowcube and Bismuth Oxide Derived from

MOF Templates for High-performance Alkaline Battery

Jianwei Wang,^{*a} Wenhui Wang,^a Huan Wang,^a Wenlin Zhang,^a Yanzhong Zhen,^a Feng Fu,^{*a} and Bin Xu^{*a,b}

[a] J. Wang, W. Wang, H. Wang, W. Zhang, Y. Zhen, F. Fu, B. Xu
School of Chemistry & Chemical Engineering, Yan'an University
Yan'an 716000, Shaanxi (P.R. China)
E-mail: wangjianwei@yau.edu.cn; fufeng@yau.edu.cn

[b] B. Xu

State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029, (P.R. China)

E-mail: xubin@mail.buct.edu.cn

* Corresponding Authors.

Table of Contents

Calculation method	3
N_2 adsorption–desorption isotherms and pore size distribution plot	4
XPS spectra	4
Morphology characterization	6
EIS fitting results	7
CV profiles	7
Nyquist plots	8
Ragone Comparison table	9
References	10

Calculation method: Specific capacity $^{1-3}$ (C_m, mAh g⁻¹) of the electrode materials and CoNiMn-LDH//Bi₂O₃ battery is reckoned as follows:

$$C_m = \frac{\int_0^t Idt}{m_c}$$

Where *t*, m_c and *I* are the discharge time (s), mass loading (g) and discharge current (A), severally. Energy density (*E*, Wh kg⁻¹) and power density (*P*, W kg⁻¹) of CoNiMn-LDH //Bi₂O₃ battery are calculated as follows:

$$E = C_m \times \Delta V$$
$$P = \frac{E}{\Delta t}$$

Here, Δt (s) and ΔV (V) are the discharging time and working potential.

N₂ adsorption–desorption isotherms and pore size distribution plot

Fig. S1. (a) N_2 adsorption–desorption isotherms and pore size distribution plot for CoNi-LDH. (b) N_2 adsorption–desorption isotherms and pore size distribution plot for CoNiMn-LDH.

XPS spectra

Fig. S2. The XPS survey of CoNi-LDH and CoNiMn-LDH.

Fig. S3. High-resolution XPS spectra of the O 1s of CoNi-LDH.

Morphology characterization

Fig. S4. SEM of ZIF-67.

Fig. S5. SEM of CoNi-LDH under magnification.

EIS fitting results

Material	R _{ct} (Ω)	R _s (Ω)
CoNi-LDH	6.783	0.646
CoNiMn-LDH	4.407	0.598

Table. S1. EIS fitting results of CoNi-LDH and CoNiMn-LDH

CV profiles

Fig. S6. Voltage window selection of the CoNiMn-LDH//Bi₂O₃ full battery

Nyquist plots

Fig. S7. EIS of the CoNiMn-LDH // Bi_2O_3 full battery.

Ragone Comparison table

Electrode materials	Power density (W kg ⁻¹)	Energy density (Wh kg ⁻¹)	References
CoNiMn-LDH//Bi ₂ O ₃	4219	120	This work
NiCo-B-S//AC	856	45	4
LDH/NG-5//AC	354	31.2	5
NiCo-LDH//AC	338	79.6	6
NiMn-LDH//AC	1700	46.7	7
NiCo ₂ S ₄ @NC//rGO	4000	30.7	8
NiCSe ₂ //HPC	400	34.8	9
Ni/Ni(OH) ₂ //AC	530	23.45	10
Ni _x Co _{1-x} (OH) ₂ //AC	348.9	21.9	11
NiCo-LDH/10//CNT	649	36.1	12
NiCoP/NiCo-OH//AC	775	34	13
Y-doped Ni(OH) ₂ //AC	754.56	22	14

Table. S2. Comparison of electrochemical performances of CoNiMn-LDH// Bi_2O_3 in this work with other literature-reported energy storage devices

References

- J. S. Sanchez, Z. Xia, N. Patil, R. Grieco, J. Sun, U. Klement, R. Qiu, M. Christian, F. Liscio, V. Morandi, R. Marcilla and V. Palermo, All-Electrochemical Nanofabrication of Stacked Ternary Metal Sulfide/Graphene Electrodes for High-Performance Alkaline Batteries, *Small*, 2022, **18**, 2106403.
- X. Zhao, R. Yu, H. Tang, D. Mao, J. Qi, B. Wang, Y. Zhang, H. Zhao, W. Hu and D. Wang, Formation of Septuple-Shelled (Co_{2/3} Mn_{1/3})(Co_{5/6}Mn_{1/6})₂O₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery, *Advanced Materials*, 2017, **29**, 1700550.
- K. Zhou, S. Wang, G. Zhong, J. Chen, Y. Bao and L. Niu, Hierarchical Heterostructure Engineering of Layered Double Hydroxides on Nickel Sulfides Heteronanowire Arrays as Efficient Cathode for Alkaline Aqueous Zinc Batteries, *Small*, 2022, **18**, 2202799.
- Q. Wang, Y. Luo, R. Hou, S. Zaman, K. Qi, H. Liu, H. S. Park and B. Y. Xia, Redox Tuning in Crystalline and Electronic Structure of Bimetal-Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance, Advanced Materials, 2019, **31**, 1905744.
- L. Yan, P. Dai, Y. Wang, X. Gu, L. Li, L. Cao and X. Zhao, In Situ Synthesis Strategy for Hierarchically Porous Ni₂P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution, ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.
- 6. Y. Zhang, H. Hu, Z. Wang, B. Luo, W. Xing, L. Li, Z. Yan and L. Wang, Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing, *Nano Energy*, 2020, **68**, 104226.
- 7. Y. Tang, H. Shen, J. Cheng, Z. Liang, C. Qu, H. Tabassum and R. Zou, Fabrication of Oxygen-Vacancy Abundant NiMn-Layered Double Hydroxides for Ultrahigh Capacity Supercapacitors, *Advanced Functional Materials*, 2020, **30**, 1908223.
- G. Xiang, Y. Meng, G. Qu, J. Yin, B. Teng, Q. Wei and X. Xu, Dual-functional NiCo₂S₄ polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries, *Science Bulletin*, 2020, **65**, 443-451.
- L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang and C. Yuan, Monodisperse Metallic NiCoSe₂ Hollow Sub-Microspheres: Formation Process, Intrinsic Charge-Storage Mechanism, and Appealing Pseudocapacitance as Highly Conductive Electrode for Electrochemical Supercapacitors, *Advanced Functional Materials*, 2018, **28**, 1705921.
- 10. S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishra and S. Kundu, One step synthesis of Ni/Ni(OH)₂ nano sheets (NSs) and their application in asymmetric supercapacitors, *RSC Advances*, 2017, **7**, 5898-5911.
- S. He, Z. Li, J. Wang, P. Wen, J. Gao, L. Ma, Z. Yang and S. Yang, MOF-derived NixCo_{1-x}(OH)₂ composite microspheres for high-performance supercapacitors, *RSC Advances*, 2016, 6, 49478-49486.
- 12. R. Ramachandran, Y. Lan, Z.-X. Xu and F. Wang, Construction of NiCo-Layered

Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors, *ACS Applied Energy Materials*, 2020, **3**, 6633-6643.

- X. Li, H. Wu, A. M. Elshahawy, L. Wang, S. J. Pennycook, C. Guan and J. Wang, Cactus-Like NiCoP/NiCo-OH 3D Architecture with Tunable Composition for High-Performance Electrochemical Capacitors, *Advanced Functional Materials*, 2018, **28**, 1800036.
- W. Wang, N. Zhang, Z. Ye, Z. Hong and M. Zhi, Synthesis of 3D hierarchical porous Ni–Co layered double hydroxide/N-doped reduced graphene oxide composites for supercapacitor electrodes, *Inorganic Chemistry Frontiers*, 2019, 6, 407-416.