Supporting Information

Au/UiO-66-Zr nanohybrids: Boosting yield rates of electrochemical ammonia synthesis at sacrifice of Faradaic efficiencies

Xiaoyu Qian ^a[†], Lu Ding ^a[†], Yanling Zhao ^a, Zhichun Li ^a, Yuanxiu Liao ^a, Jiabin Tan ^b and Xiaobo He ^{a*}

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
^b College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China

*Corresponding author

Tel.: +86-519-86330253

E-mail: hexiaobo@cczu.edu.cn

[†] These authors contributed equally.

Supporting Figures.

Fig. S1. XRD patterns: (a) Simulated one of UiO-66-Zr on the basis of the structure of CCDC#1405751; (b) The prepared pristine UiO-66-Zr and xAu/UiO-66-NaBH₄; (c) xAu/UiO-66-N₂H₄; (d) The pristine UiO-66-Zr, 1UiO-66-NaBH₄ and 5UiO-66-NaBH₄, in which 1UiO-66-NaBH₄ and 5UiO-66-NaBH₄ are the pristine UiO-66-Zr treated by 1 mL and 5 mL of 0.5 M NaBH₄ solution (the solvent was a mixture of anhydrous ethanol and ultrapure water with a volume ratio of 1:1), respectively; (e) Zoomed in ones of the pristine UiO-66-Zr and xAu/UiO-66-N₂H₄.

Fig. S2. (a) ESR of UiO-66-Zr and $xAu/UiO-66-N_2H_4$; (b) Relationships between surface contents of Au and spin concentrations for both $xAu/UiO-66-N_2H_4$ and $xAu/UiO-66-N_2H_4$.

Fig. S3. TG curves in air of xAu/UiO-66-NaBH₄ (x = 1 (a), 2 (b), 3 (c), 4 (d), and 6 (e)) and xAu/UiO-66-N₂H₄ (x = 1 (f), 2 (g), 3 (h), 4 (i), 5 (j), 5 (

and 6 (k)).

Fig. S4. DSC curves in air: (a) The pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (b) The pristine UiO-66-Zr and *x*Au/UiO-66-N₂H₄; (c) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄; (d) Stage II of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄.

Fig. S5. Porosity for $xAu/UiO-66-NaBH_4$: (a) Relationship between surface contents of Au and BET SSAs, and that between surface contents of Au and pore volumes, and the inset shows relationship between lost linkers per Zr₆ node and BET SSAs, and that between lost linkers per Zr₆ node and pore size distributions.

Fig. S6. Porosity for xAu/UiO-66-N₂H₄: (a) N₂-sorption isotherms at 77 K of the pristine UiO-66-Zr and xAu/UiO-66-N₂H₄; (b) Relationship between surface contents of Au and BET SSAs, and that between surface contents of Au and pore volumes, and the inset shows relationship between lost linkers per Zr_6 node and BET SSAs, and that between lost linkers per Zr₆ node and BET SSAs, and that between lost linkers per Zr₆ node and pore size distributions.

Fig. S7. SEM images: (a) The pristine UiO-66-Zr; (b) 1UiO-66-NaBH₄; (c) 5UiO-66-NaBH₄.

Fig. S8. TEM images and size distributions: (a) The pristine UiO-66-Zr; (b) 1UiO-

66-NaBH₄; (c) 5UiO-66-NaBH₄; (d) Side length distribution of octahedral pristine UiO-66-Zr nanoparticles; (e) Side length distribution of octahedral 1UiO-66-NaBH₄ nanoparticles; (f) Side length distribution of octahedral 5UiO-66-NaBH₄ nanoparticles.

S-14

Fig. S9. TEM and SEM images and size distributions of Au and UiO-66-Zr support nanoparticles for other samples: (a) and (b) TEM images of 1Au/UiO-66-NaBH₄; (c) SEM image of 1Au/UiO-66-NaBH₄, in which some Au nanoparticles are marked by red dotted circles; (d) Corresponding size distributions of Au nanoparticles in 1Au/UiO-66-NaBH₄; (e) and (f) TEM images of 1Au/UiO-66-N₂H₄; (g) SEM image of 1Au/UiO-66-N₂H₄, in which some Au nanoparticles are marked by red dotted circles; (h) Corresponding size distributions of Au nanoparticles in 1Au/UiO-66-N₂H₄; (i) Side length distribution of Au nanoparticles in 1Au/UiO-66-N₂H₄; (i) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 1Au/UiO-66-NaBH₄; (j) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 1Au/UiO-66-N₂H₄.

Fig. S10. TEM and SEM images and size distributions of Au and UiO-66-Zr support nanoparticles for other samples: (a) and (b) 2Au/UiO-66-NaBH₄; (c) Corresponding size distributions of Au nanoparticles in 2Au/UiO-66-NaBH₄; (d) and (e) 2Au/UiO-66-N₂H₄; (f) Corresponding size distributions of Au nanoparticles in 2Au/UiO-66-N₂H₄; (g) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 2Au/UiO-66-NaBH₄; (h) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 2Au/UiO-66-N₂H₄.

Fig. S11. TEM and SEM images and size distributions of Au and UiO-66-Zr support nanoparticles for other samples: (a) and (b) 3Au/UiO-66-NaBH₄; (c) Corresponding size distributions of Au nanoparticles in 3Au/UiO-66-NaBH₄; (d) and (e) 3Au/UiO-66-N₂H₄; (f) Corresponding size distributions of Au nanoparticles in 3Au/UiO-66-N₂H₄; (g) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 3Au/UiO-66-NaBH₄; (h) Side length distribution of octahedral UiO-66-Zr support 66-Zr support nanoparticles in 3Au/UiO-66-N₂H₄.

Fig. S12. TEM and SEM images and size distributions of Au and UiO-66-Zr support nanoparticles for other samples: (a) and (b) 4Au/UiO-66-NaBH₄; (c) Corresponding size distributions of Au nanoparticles in 4Au/UiO-66-NaBH₄; (d) and (e) 4Au/UiO-66-N₂H₄; (f) Corresponding size distributions of Au nanoparticles in 4Au/UiO-66-N₂H₄; (g) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 4Au/UiO-66-NaBH₄; (h) Side length distribution of octahedral UiO-66-Zr support 66-Zr support nanoparticles in 4Au/UiO-66-N₂H₄.

Fig. S13. TEM and SEM images and size distributions of Au and UiO-66-Zr support nanoparticles for other samples: (a) and (b) 6Au/UiO-66-NaBH₄; (c) Corresponding size distributions of Au nanoparticles in 6Au/UiO-66-NaBH₄; (d) and (e) 6Au/UiO-66-N₂H₄; (f) Corresponding size distributions of Au nanoparticles in 6Au/UiO-66-N₂H₄; (g) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 6Au/UiO-66-NaBH₄; (h) Side length distribution of octahedral UiO-66-Zr support nanoparticles in 6Au/UiO-66-N₂H₄.

Fig. S14. (a) Relationship between lost linkers per Zr_6 node and mean sizes of Au nanoparticles; (b) Relationship between lost linkers per Zr_6 node and mean side lengths of octahedral UiO-66-Zr support nanoparticles.

Fig. S15. XPS spectra of the pristine UiO-66-Zr and *x***Au/UiO-66-N**₂**H**₄**:** (a) Au 4f; (b) Zr 3d; (c) O 1s; (d) N1s.

Fig. S16. (a) Relationship between surface contents of Au and *BE* values of Au $4f_{7/2}$ and Zr $3d_{5/2}$ (b) Relationship between surface contents of Au and *BE* values of Zr-O-Zr (O 1s) and Zr-OH (O 1s); (c) Relationship between surface contents of Au and *BE* values of -C-N, -NH₂ and -NH₃⁺; (d) Relationship between surface contents of Au and those of Zr-O-Zr & Zr-OH and total N.

Fig. S17. Additional XPS VB spectra (15~20 eV and 28~35 eV) for the pristine UiO-66-Zr, *x*Au/UiO-66-NaBH₄ and *x*Au/UiO-66-N₂H₄.

Note S1: Bands VII and VIII within the range from 15 to 20 eV are attributed to C 2s and N 2s, respectively. The bands within the range from 28 to 35 eV correspond to Zr 4p, which also have spin-orbit doublets, i.e., Zr $4p_{3/2}$ and Zr $4p_{1/2}$. The *BE* values for C 2s for various samples of *x*Au/UiO-66-NaBH₄ are close, which have the mean value of $x_{2} = 27$

~17.12 eV with a low RSD of ~0.68%. Similar thing also happens to N 2s (mean value of ~18.78 eV with a low RSD of ~0.80%), Zr $4p_{3/2}$ (mean value of ~30.70 eV with a low RSD of ~0.28%), and Zr $4p_{1/2}$ (mean value of ~32.34 eV with a low RSD of ~0.21%). In addition, similar thing also happens to C 2s (mean value of ~17.24 eV with a low RSD of ~0.29%), N 2s (mean value of ~18.94 eV with a low RSD of ~0.23%), Zr $4p_{3/2}$ (mean value of ~30.82 eV with a low RSD of ~0.05%), and Zr $4p_{1/2}$ (mean value of ~32.46 eV with a low RSD of ~0.05%) for the samples of xAu/UiO-66-N₂H₄. The results suggest that the *BE* of C 2s, N 2s, and Zr 4p is hardly affected by the loaded Au or the lost-linker defects for both xAu/UiO-66-NaBH₄ and xAu/UiO-66-N₂H₄.

S-29

Fig. S18. I-t curves at different potentials: (a) The pristine UiO-66-Zr; (b) 1Au/UiO-66-NaBH₄; (c) 2Au/UiO-66-NaBH₄, (d) 3Au/UiO-66-

NaBH₄; (e) 4Au/UiO-66-NaBH₄; (f) 5Au/UiO-66-NaBH₄; (g) 6Au/UiO-66-NaBH₄.

Fig. S19. *I-t* curves at different potentials: (a) 1Au/UiO-66-N₂H₄; (b) 2Au/UiO-66-N₂H₄; (c) 3Au/UiO-66-N₂H₄; (d) 4Au/UiO-66-N₂H₄; (e)

5Au/UiO-66-N₂H₄; (f) 6Au/UiO-66-N₂H₄.

Fig. S20. (a) UV-vis spectra for ammonium chloride (NH_4Cl) solutions via indophenol method; (b) Standard absorbance- NH_3 concentration calibration curve.

Fig. S21. UV-vis absorption spectra using indophenol method under different potentials: (a) The pristine UiO-66-Zr; (b) 1Au/UiO-66-

NaBH₄; (c) 2Au/UiO-66-NaBH₄, (d) 3Au/UiO-66-NaBH₄; (e) 4Au/UiO-66-NaBH₄; (f) 5Au/UiO-66-NaBH₄; (g) 6Au/UiO-66-NaBH₄.

Fig. S22. UV-vis absorption spectra using indophenol method under different potentials: (a) 1Au/UiO-66-N₂H₄; (b) 2Au/UiO-66-N₂H₄;

(c) 3Au/UiO-66-N₂H₄; (d) 4Au/UiO-66-N₂H₄; (e) 5Au/UiO-66-N₂H₄; (f) 6Au/UiO-66-N₂H₄.

Fig. S23. ^{*R*_{NH3}} and FE at different potentials: (a) The pristine UiO-66-Zr; (b) 1Au/UiO-66-NaBH₄; (c) 2Au/UiO-66-NaBH₄, (d) 3Au/UiO-66-

NaBH₄; (e) 4Au/UiO-66-NaBH₄; (f) 5Au/UiO-66-NaBH₄; (g) 6Au/UiO-66-NaBH₄.

Fig. S24. R_{NH_3} and FE at different potentials: (a) 1Au/UiO-66-N₂H₄; (b) 2Au/UiO-66-N₂H₄; (c) 3Au/UiO-66-N₂H₄; (d) 4Au/UiO-66-N₂H₄;

(e) 5Au/UiO-66-N₂H₄; (f) 6Au/UiO-66-N₂H₄.

Fig. S25. (a) UV-vis spectra for standard N_2H_4 solutions via Watt-Chrisp method; (b) Absorbance- N_2H_4 concentration calibration curve; (c) UV-vis spectra of the electrolytes after NRR over 5Au/UiO-66-NaBH₄ via the Watt-Chrisp method.

Fig. S26. (a) *I-t* curves of different control experiments; (b) UV-vis absorption spectra of the corresponding electrolytes.

Fig. S27. CV curves at different scan rates within the potential ranges without Faradic currents: (a) The pristine UiO-66-Zr; (b) 1Au/UiO-66-NaBH₄; (c) 2Au/UiO-66-NaBH₄, (d) 3Au/UiO-66-NaBH₄; (e) 4Au/UiO-66-NaBH₄; (f) 5Au/UiO-66-NaBH₄; (g) 6Au/UiO-66-NaBH₄.

Fig. S28. CV curves at different scan rates within the potential ranges without

Faradic currents: (a) 1Au/UiO-66-N₂H₄; (b) 2Au/UiO-66-N₂H₄; (c) 3Au/UiO-66-N₂H₄; (d) 4Au/UiO-66-N₂H₄; (e) 5Au/UiO-66-N₂H₄; (f) 6Au/UiO-66-N₂H₄.

Fig. S29. (a) and (b) The plots of the relationship between scan rates and differences of anode and cathode currents for $xAu/UiO-66-NaBH_4$ and $xAu/UiO-66-N_2H_4$, respectively, also including that for the pristine UiO-66-Zr.

Fig. S30. Relations between ΔBE_{O-Au} and lost linkers per Zr₆ node.

Fig. S31. (a) Relationships between surface contents of Au and C_{dl} ; (b) Relationships between lost linkers per Zr₆ node and C_{dl} ; (c) Relationships between r_{NH_3} and BET SSAs-normalized r_{NH_3} ; (d) Relationships between C_{dl} and BET SSAs-normalized r_{NH_3} .

Fig. S32. (a) and (b) EIS plots at OCP for $xAu/UiO-66-NaBH_4$ and $xAu/UiO-66-N_2H_4$, respectively.

Fig. S33. (a) Relationships between surface contents of Au and R_{ct} ; (b) Relationships between lost linkers per Zr₆ node and R_{ct} ; (c) Relationships between R_{ct} and FE, and those between R_{ct} and r_{NH_3} .

Supporting Tables

Table S1. Core-level binding energy	y of surface species	es in the pristine UiO-66-Zr and xAu/UiO-66-NaBH ₄ .
--	----------------------	---

	N 1s (eV	<i>V</i>)		O 1s (eV)		Au 4f	(eV)	ADE	Zr 3d (e	eV)	ADE
Samples	-C-N	-NH ₂	-NH3 ⁺	Zr-O- Zr	Zr-OH	А- Н ₂ О	4f _{7/2}	4f _{5/2}	(eV)	3d _{5/2}	3d _{3/2}	(eV)
The pristine UiO- 66-Zr	399.12	400.19	401.43	530.58	531.71	532.55	-	-	-	182.97	185.34	2.37
1Au/UiO-66- NaBH ₄	398.76	399.59	400.49	530.40	531.58	532.57	84.30	87.92	3.62	182.82	185.19	2.37
2Au/UiO-66- NaBH ₄	398.76	399.58	400.44	530.28	531.57	532.37	84.20	87.85	3.65	182.77	185.14	2.37
3Au/UiO-66- NaBH ₄	398.77	399.54	400.44	530.15	531.51	532.22	84.17	87.83	3.66	182.73	185.10	2.37

4Au/UiO-66-	200.71	200 55	400.42	520.00	521 45	522.24	0415	07.01	2.00	102 70	195.07	0.07
NaBH ₄	398.71	399.33	400.43	530.00	551.45	552.54	84.15	87.81	3.00	182.70	185.07	2.37
5Au/UiO-66-	200 75	200.52	400 41	500.05	521.20	522 40	04.06	07.71	2.65	100 65	107 01	2.26
NaBH ₄	398.75	399.53	400.41	529.95	531.38	532.40	84.06	8/./1	3.65	182.65	185.01	2.36
6Au/UiO-66-	200 55	200 6	100.10	53 0.00	501.15	500 1 (00.00	07.64	2 (5	100 (0	105 00	0.05
NaBH ₄	398.75	399.6	400.48	529.88	531.17	532.16	83.99	87.64	3.65	182.63	185.00	2.37

]	N 1s (eV))	(O 1s (eV)		Au 4f	f(eV)	ADE	Zr 3d	(eV)	ADE
Samples	-C-N	-NH ₂	-NH3 ⁺	Zr-O- Zr	Zr-OH	А- Н ₂ О	4f _{7/2}	4f _{5/2}	Δ <i>BL</i> _{spin-orbit} (eV)	3d _{5/2}	3d _{3/2}	(eV)
1Au/UiO-66-	308.07	300 72	400.60	530.60	531 72	532.68	84.40	88.04	3.64	182.88	185.25	2 37
N_2H_4	390.92	399.12	400.00	550.09	551.72	552.08	04.40	00.04	5.04	162.00	165.25	2.57
2Au/UiO-66-	398 91	399 76	400 69	530.62	531 71	532 50	84 37	88.02	3 65	182 87	185 24	2 37
N_2H_4	570.71	577.10	400.09	550.02	551.71	552.50	04.57	00.02	5.05	102.07	103.24	2.37
3Au/UiO-66-	398 92	399 78	400 67	530.64	531 69	532 61	84 38	88 04	3 66	182.88	185 25	2 37
N_2H_4	570.72	577.10	400.07	550.04	551.09	552.01	04.50	00.04	5.00	102.00	105.25	2.37
4Au/UiO-66-	398 90	399 73	400 64	530.65	531 71	532.66	84 36	88.02	3 66	182.86	185 23	2 37
N_2H_4	570.70	577.15	400.04	550.05	551.71	552.00	04.50	00.02	5.00	102.00	105.25	2.37
5Au/UiO-66-	398.90	399.76	400.60	530.63	531.69	532.58	84.37	88.03	3.66	182.87	185.23	2.36

Table S2. Core-level binding energy of surface species in $xAu/UiO-66-N_2H_4$.

N_2H_4												
6Au/UiO-66-	308.07	300 73	400.61	530.67	531 70	532 64	8/ 30	88.04	3 65	182.87	185.24	2 37
N_2H_4	590.92	577.15	400.01	550.07	551.70	552.04	07.37	00.04	5.05	102.07	105.24	2.51

		N	(at%)				O (at%)				
Samples	CN	NILI	NILI +	Total	Zr-O-	7, 04		Zr-O-Zr	Total	Au (at%)	Zr (at%)
	-C-N	-1 N Π2	-1113	Totai	Zr	ZI-OH	Α-Π ₂ Ο ⁻⁴	& Zr-OH	Total		
The pristine UiO-66-Zr	3.40	1.76	0.91	6.08	7.91	15.65	7.90	23.56	31.46	-	4.27
1Au/UiO-66-NaBH ₄	2.53	1.54	1.17	5.24	10.21	15.64	8.75	25.85	34.60	0.14	5.25
2Au/UiO-66-NaBH ₄	2.02	1.50	1.04	4.56	9.41	16.62	9.05	26.03	35.08	0.25	5.39
3Au/UiO-66-NaBH ₄	1.92	1.17	0.96	4.05	9.12	17.68	9.23	26.80	36.03	0.40	5.73
4Au/UiO-66-NaBH ₄	1.71	0.92	1.13	3.76	8.89	19.4	9.67	28.29	37.96	0.95	6.64
5Au/UiO-66-NaBH ₄	1.32	0.87	1.07	3.26	8.01	21.23	10.75	29.24	39.99	1.10	7.16
6Au/UiO-66-NaBH ₄	1.00	0.73	1.02	2.75	7.78	23.90	12.99	31.68	44.67	1.42	8.14

Table S3. Surface atomic compositions of the pristine UiO-66-Zr and *x*Au/UiO-66-NaBH₄ determined by XPS.

^{a)} A-H₂O refers to adsorbed H₂O.

		N (a	t%) a				O (at%) ^a				
Samples	-C-N	-NH ₂	-NH3 ⁺	Total	Zr-O-Zr	Zr-OH	A-H ₂ O	Zr-O-Zr & Zr-OH	Total	Au (at%)	Zr (at%) ^a
1Au/UiO-66-N ₂ H ₄	2.79	1.39	1.30	5.48	12.73	14.46	7.99	27.19	35.18	0.12	5.16
2Au/UiO-66-N ₂ H ₄	2.47	1.53	1.22	5.21	11.89	14.22	8.52	26.11	34.63	0.19	5.20
3Au/UiO-66-N ₂ H ₄	2.53	1.45	1.29	5.27	11.96	13.9	8.43	25.86	34.29	0.29	5.06
4Au/UiO-66-N ₂ H ₄	2.55	1.40	1.49	5.44	11.97	14.19	7.86	26.16	34.02	0.33	5.15
5Au/UiO-66-N ₂ H ₄	2.51	1.32	1.31	5.14	12.35	13.58	7.8	25.93	33.73	0.44	5.16
6Au/UiO-66-N ₂ H ₄	2.65	1.33	1.16	5.14	11.88	13.29	8.29	25.17	33.46	0.53	5.04

Table S4. Surface atomic compositions of $xAu/UiO-66-N_2H_4$ determined by XPS.

^a The mean surface contents of -C-N, $-NH_2$, $-NH_3^+$, total N, Zr-O-Zr, Zr-OH, A-H₂O (referred to adsorbed H₂O), Zr-O-Zr & Zr-OH, total O and Zr are ~2.58, ~1.41, ~1.29, ~5.28, ~12.13, ~13.94, ~8.15, ~26.07, ~34.22 and ~5.13 at%, respectively, and the corresponding RSD values are ~4.6, ~5.5, ~8.6, ~2.8, ~2.8, ~3.2, ~3.8, ~2.5, ~1.8\% and ~1.2%, respectively. But, the changes of the surface contents of Au are more significant (mean:

~0.32 at%, RSD: ~48%).

Samples		Au	$\Delta BE_{\text{spin-orbit}}$ (Au	$\Delta BE_{\text{O-Au}}$ (O 2p		O 2p	C 2p	C 2p
	Au 5d _{5/2}	5d _{3/2}	5d _{3/2} - Au 5d _{5/2} ,	non-bonding-Au	O 2p non-	bonding	(3e2g+1a2u,	(3e1u+1b2u,
	(eV)	(eV)	eV)	5d _{5/2} , eV)	bonding (eV)	(eV)	eV)	eV)
The pristine								
UiO-66-Zr					4.73	6.86	10.14	12.98
1Au/UiO-66-								
NaBH ₄	3.71	6.12	2.41	1.02	4.73	7.39	10.05	12.75
2Au/UiO-66-								
NaBH ₄	3.5	6.15	2.65	1.23	4.73	7.38	10.1	12.63
3Au/UiO-66-								
NaBH ₄	3.25	6.1	2.85	1.41	4.66	7.35	10.07	12.74
4Au/UiO-66-	3.04	6.14	3.1	1.53	4.57	7.31	10.06	12.55

Table S5. XPS valence band binding energy (-4.5~15 eV) in the pristine UiO-66-Zr, xAu/UiO-66-NaBH₄ and xAu/UiO-66-N₂H₄.

NaBH ₄								
5Au/UiO-66-								
NaBH ₄	2.83	5.99	3.16	1.57	4.4	7.2	10.03	12.53
6Au/UiO-66-								
NaBH ₄	2.75	5.96	3.21	1.55	4.3	7.23	9.75	12.49
1Au/UiO-66-								
N_2H_4	3.77	6.04	2.27	0.97	4.74	7.38	10.17	12.98
2Au/UiO-66-								
N_2H_4	3.55	6.09	2.54	1.21	4.76	7.39	10.12	12.90
3Au/UiO-66-								
N_2H_4	3.33	6.11	2.78	1.40	4.73	7.39	10.25	12.88
4Au/UiO-66-								
N_2H_4	3.26	6.14	2.88	1.49	4.75	7.3	10.11	12.8

5Au/UiO-66-								
N_2H_4	3.19	6.13	2.94	1.47	4.66	7.44	10.21	12.69
6Au/UiO-66-								
N_2H_4	3.19	6.03	2.84	1.45	4.64	7.34	10.08	12.86

Catalyst	r_{NH_3} (µg h ⁻¹ mg _{cat} ⁻¹)	FE (%)	Electrolyte	Potential (V vs. RHE)	Loading (mg cm ⁻²)	Refs.
5Au/UiO-66-NaBH ₄	163.33	55.52	0.1 M Na2SO4	-0.3	0.5	This work
HT Au@MOF	49.5	60.9	0.1 M Na ₂ SO ₄	-0.3	N.A.	[1]
Ru SAs/N-C	120.9	29.6	$0.05 \text{ M H}_2\text{SO}_4$	-0.2	0.255	[2]
Ru SAs/g-C ₃ N ₄	23	8.3	0.5 M NaOH	0.05	N.A.	[3]
Rh@SnO ₂	149	11.69	$0.05 \text{ M H}_2\text{SO}_4$	-0.35	0.05	[4]
OVs-Pd ₃ Pb-2	88.3	41.1	0.1 M Li ₂ SO ₄	-0.05	N.A.	[5]
Fe ₂ O ₃ @MoS ₂	112.15	8.62	0.1 M Na ₂ SO ₄	-0.6 for r_{NH_3} -0.4 for FE	0.3	[6]
C@YSZ	24.60	8.2	0.1 M Na ₂ SO ₄	-0.5	0.2	[7]

Table S6. Summary of the recently-developed catalysts toward NRR to NH_3 .

Ni-Fe@MoS ₂	128.17	11.34	0.1 M Na ₂ SO ₄ (@40 °C)	-0.3	0.71	[8]
C-BN	44.59	13.27	0.1 M Na ₂ SO ₄	-0.9 for ^{<i>r</i>_{NH3}} -0.7 for FE	0.24	[9]
Zn ¹ N-C	16.1	11.8	0.1 M KOH	-0.3	N.A.	[10]
Bi@C	4.22	15.1	0.1 M Na ₂ SO ₄	-0.6 for ^{<i>r</i>_{NH₃} -0.4 for FE}	0.25	[11]
NC/Bi SAs/TiN/CC	76.15	24.6	0.1 M Na ₂ SO ₄	-0.8 for ^{<i>r</i>_{NH3}} -0.5 for FE	N.A.	[12]
Rh ₂ P@NPC	37.5	7.64	0.05 M H ₂ SO ₄	-0.25 for r_{NH_3} -0.05 for FE	0.2	[13]
FeMoPPc	36.33	20.62	0.1 M KOH	-0.3	0.5	[14]

Supporting references

- H.M. He, Q.Q. Zhu, Y. Yan, H.W. Zhang, Z.Y. Han, H.M. Sun, J. Chen, C.P. Li,
 Z.H. Zhang and M. Du, Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N₂ reduction to NH₃, *Appl. Catal. B*, 2022, **302**, 120840.
- Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng,
 Achieving a record-high yield rate of 120.9<sup>µg_{NH3}mg_{cat}⁻¹h⁻¹ for N₂ electrochemical reduction over Ru single-atom catalysts, *Adv. Mater.*, 2018, **30**, 1803498.
 </sup>
- B. Yu, H. Li, J. White, S. Donne, J.B. Yi, S. Xi, Y. Fu, G. Henkelman, H. Yu, Z.L.
 Chen and T.Y. Ma, Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion, *Adv. Funct. Mater.*, 2020, 30, 1905665.
- 4 Y.Q. Liu, L. Huang, Y.X. Fang, X.Y. Zhu, J.L. Nan and S.J. Dong, Interfacial electron regulation of Rh atomic layer-decorated SnO₂ heterostructures for enhancing electrocatalytic nitrogen reduction, ACS Appl. Mater. Interfaces, 2022,14, 12304-12313.
- 5 Z.C. Wang, J. Liu, X.K. Wu, N.Z. Nie, D. Zhang, H.D. Li, H. Zhao, J.P. Lai and L. Wang, Engineering ordered vacancies and atomic arrangement over the intermetallic PdM/CNT (M=Pb,Sn,In) nanocatalysts for synergistically promoting electrocatalysis N₂ fixation, *Appl. Catal. B*, 2022, **314**, 121465.
- 6 C.Q. Ma, D. Liu, Y.L. Zhang, J.Y. Lee, J. Tian, B.P. Liu and S.H. Yan, MOFderived Fe₂O₃@MoS₂: An efficient electrocatalyst for ammonia synthesis under mild conditions, *Chem. Eng. J.*, 2022, **430**, 132694.

- S.J. Luo, X.M. Li, M.Y. Wang, X. Zhang, W.G. Gao, S.D Su, G.W. Liu and M. Luo, Long-term electrocatalytic N₂ fixation by MOF-derived Y-stabilized ZrO₂: insight into the deactivation mechanism, *J. Mater. Chem. A*, 2020, 8, 5647-5654.
- 8 L.B. Zeng, X.Y. Li, S. Chen, J.L. Wen, W. Huang and A. Chen, Unique hollow Ni-Fe@MoS₂ nanocubes with boosted electrocatalytic activity for N₂ reduction to NH₃, *J. Mater. Chem. A*, 2020, **8**, 7339-7349.
- 9 C.Q. Ma, Y.L. Zhang, S.H. Yan and B.P. Liu, Carbon-doped boron nitride nanosheets: A high-efficient electrocatalyst for ambient nitrogen reduction, *Appl. Catal. B*, 2022, **315**, 121574.
- 10 Y. Kong, Y. Li, X.H. Sang, B. Yang, Z.J. Li, S.X. Zheng, Q.H. Zhang, S.Y. Yao, X.X. Yang, L.C. Lei, S.D. Zhou, G. Wu and Y. Hou, Atomically dispersed zinc(I) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis, *Adv. Mater.*, 2022, **34**, 2103548.
- 11 Y.C. Wan, H.J. Zhou, M.Y. Zheng, Z.H. Huang, F.Y. Kang, J. Li and R.T. Lv, Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia, *Adv. Funct. Mater.*, 2021, **31**, 2100300.
- 12 Z.C. Xi, K. Shi, X. Xu, P. Jing, B.C. Liu, R. Gao and J. Zhang, Boosting nitrogen reduction reaction via electronic coupling of atomically dispersed bismuth with titanium nitride nanorods, *Adv. Sci.*, 2022, 9, 2104245.
- J.F. Su, H.Y. Zhao, W.W. Fu, W. Tian, X.H. Yang, H.J. Zhang, F.L. Ling and Y.
 Wang, Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: New efficient electrocatalysts for ambient nitrogen fixation, *Appl.*

Catal. B, 2020, 265, 118589.

Y.J. Wang, W.Z. Cheng, P.F. Yuan, G.G. Yang, S.C. Mu, J.L. Liang, H.C. Xia, K. Guo, M.L. Liu, S.Y. Zhao, G. Qu, B.A. Lu, Y.F. Hu, J.S. Hu and J.N. Zhang, Boosting nitrogen reduction to ammonia on FeN₄ sites by atomic spin regulation, *Adv. Sci.*, 2021, 8, 2102915.