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1. Experimental section

The synthetic routes of reference ligand (RL, N'-([2,2':6',2''-terpyridin]-4'-yl)propane-

1,3-diamine) and target ligand (TL, 2-(3-([2,2':6',2''-terpyridin]-4'-ylamino)propyl)-

1H-benzo[de]isoquinoline-1,3(2H)-dione) are listed in Scheme S1.
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Scheme S1. The synthetic routes of RL and TL

Synthesis of RL: RL was synthesized according to a previously reported synthetic 

procedure [S1].

Synthesis of TL: the detailed synthesis of TL was described as follows according to 

McCluskey’s report [S2]. Using anhydrous potassium carbonate as a catalyst, a mixture 

of RL (100 mg, 0.33 mmol), 1,8-naphthaleneanhydride (70 mg, 0.35 mmol), and 60 

mL absolute ethanol was stirred under 80 ℃ overnight. After the solvent was cooled to 

room temperature, the precipitate filter was washed with hot water and dried. The 

residue was purified by recrystallization from ethanol and water to obtain TL as a white 

powder. Yield: 105 mg (66%). TL was well characterized by NMR, HRMS, and IR 

spectra. 1H NMR (CDCl3, 400 MHz) δ 8.68-8.59 (m, 6H), 8.24-8.22 (d, 2H), 7.85-7.73 

(m, 6H), 7.32-7.29 (t, 2H), 5.28-5.25 (t, 1H), 4.37-4.34 (t, 2H), 3.49-3.44 (q, 2H), 2.16-

2.10 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 164.70, 157.01, 156.01, 155.40, 148.97, 

136.83, 134.29, 131.73, 131.62, 128.33, 127.15, 123.58, 122.60, 121.48, 104.89, 39.77, 

37.72, 27.60; HRMS-ESI m/z (%): Calculated for C30H23N5O2 [M + H]+ : 486.1925; 
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Found: 486.1900; IR: 3372 cm1 (Ar-NH-); 3057 cm1 (Ar-H); 2963, 2846 cm1 (-

CH2-); 1699 cm1 (-C=O); 1653 cm1 (C=N), 1582 cm1 (C=C), 1265 cm1 (C-C-N).
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Synthesis of TL-Eu/Tb/Gd and RL-Eu/Tb (Scheme S2): To a stirred 0.11 mmol 

TL/RL in 30 mL ethyl acetate, 0.05 mmol Ln(NO3)3·6H2O (Ln = Eu3+, Tb3+, Gd3+) in 

6 mL ethyl acetate was added and reacted for 24 h at 40 ℃. White precipitates were 

obtained by filtration and washed with excess ethyl acetate. ICP and EA (%) calculated 

for [C60H46N13O13Eu]: Eu 11.68; C 54.99; H 3.54; N 13.90. Found: Eu 11.81; C 52.68; 

H 3.72; N 13.78. ICP and EA (%) calculated for [C60H46N13O13Tb]: Tb 12.08; C 54.76; 

H 3.52; N 13.84. Found: Tb 12.68; C 53.21; H 3.37; N 13.11. ICP and EA (%) 

calculated for [C60H46N13O13Gd]: Gd 11.96; C 54.83; H 3.53; N 13.85. Found: Gd 

12.04; C 52.94; H 3.26; N 12.54.

Determination of the association constant

The association constant (Ka) value was calculated based on the fluorescent titration 

data. Ka for the formation of a complex between TL and Eu3+/Tb3+ or other metal ions 

(Mi) can be described by following expression (3):

    (3)
𝐾𝑎 =  

[2𝑇𝐿 ∙ 𝑀𝑖]

[𝑇𝐿]2[𝑀𝑖]
 

where [TL], [Mi], [2TL Mi] are the equilibrium concentration of TL, metal ions ∙

including Eu3+/Tb3+ and 2TL Mi, Ka can be obtained according to the reported method ∙

[S3] by the equation (4). 
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𝑦 =  
𝑥

2 × 𝑎 × 𝑏 × (1 ‒ 𝑥)2 
+  

𝑥 × 𝑏
2

         (4)

Here, x is (A - A0)/(Amax - A0), y is the concentration of metal ions, a is the Ka, and b 

is the concentration of TL, respectively.

The calculation for the limit of detection

The limit of detection (LOD) was calculated by the following equation (5) according to 

the previous literature [S4].

    (5)𝐿𝑂𝐷 = (3 × 𝜎)/𝑆𝑙𝑜𝑝𝑒

Where LOD and σ represent the limit of detection and standard deviation of the blank 

(S).

σ = 
∑(𝐴(𝐼) ‒ 𝐴1(𝐼1))2

(𝑁 ‒ 1)

Where A/I is the absorbance/intensity of TL/TL-Eu in the absence of analytes, A1/I1 

is the average of A/I. N = 10.
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2. Supporting figures

Figure S1 1H NMR spectrum (400 MHz, 25 °C) of RL in CDCl3.

Figure S2 1H NMR spectrum (400 MHz, 25 °C) of TL in CDCl3.
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Figure S3 13C NMR spectrum (100 MHz, 25 °C) of TL in CDCl3.

Figure S4 ESI-MS spectrum of TL, Calcd. For C30H23N5O2 [M + H]+ : 486.1925; 

Found: 486.1900.
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Figure S5 High-resolution IR spectrum of TL.

Figure S6 Concentration (form 1.0 μM to 100.0 μM) dependent UV-Vis spectra of TL 

in CHCl3-CH3CN (7:3, V/V) solution.
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Figure S7 Fluorescence excitation and emission spectra of TL@PMMA at 25 °C, 

respectively.

Figure S8 Job’s plot of TL with Eu3+/Tb3+ ([TL + Eu3+/Tb3+] = 20 μM) in CHCl3-

CH3CN (7:3, V/V) solution shows 2:1 stoichiometry.
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Figure S9 ESI-MS spectrum of TL-Eu, Calcd. For C60H49N13O13Eu [2TL + Eu3+ + 

3NO3
 + 3H+]3+: 437.4262, Found: 437.1929.

Figure S10 ESI-MS spectrum of TL-Tb, Calcd. For C64H57N12O12Tb [2TL + Tb3+ + 

C4H8O2 + 2NO3
 + 3H+]4+: 336.0868, Found: 336.1228; Calcd. For C60H53N11O10Tb 

[2TL + Tb3+ + NO3
 + H+ + 3H2O]3+: 415.4410, Found: 415.2111, respectively.
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Figure S11 High-resolution IR spectra of TL, TL-Eu and TL-Tb.

Figure S12 (a,c) UV-Vis consecutive titration of TL (40 μM) with Eu3+/Tb3+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b, d) the result of calculation of Ka by non-

linear least square fitting, respectively.
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Figure S13 Emission spectra of TL-Eu/Tb in CHCl3-CH3CN (7:3, V/V) binary solution 

at 25 °C.

Figure S14 (a) Emission spectra of TL-Eu in different solvents upon 354 nm excitation 

at 25 °C and (b) the corresponding pictures. 
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Figure S15 PXRD patterns of TL, TL-Eu, TL-Tb and TL-Gd, respectively.

 

Figure S16 The element content of C, N, O and Eu/Tb elements in EDX energy spectra 

of TL-Eu (a) and TL-Tb (b).
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Figure S17 TGA curve of TL-Eu/Tb from room temperature to 900 °C.

To investigate the thermal stability of TL-Eu/Tb, thermogravimetric analysis was 

implemented under flowing nitrogen (100 mL·min1). Solid samples (10 mg) were put 

placed in an alumina crucible, ramped to 900 °C at a rate of 10 °C min−1, and kept at 

that temperature for 30 min. It is found that the TL-Eu/Tb in solid was not decomposed 

until 280 °C. These observations indicate that emissive materials have good structural 

and thermal stability.

Figure S18 Fluorescence spectra of solid-state TL-Eu at different excitation 

wavelengths (ranging 350-410 nm) at room temperature.
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Figure S19 Chromaticity coordinates of TL-Eu at different excitation (ranging 350-

410 nm).

Figure S20 The absolute fluorescence lifetime of solid-state TL at 422 nm (λex = 355 

nm).
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Figure S21 (a) Fluorescence excitation and emission spectra and (b) fluorescence 

spectra at different excitation wavelengths (ranging 310-390 nm) of solid-state TL-Tb 

at room temperature.

Figure S22 Fluorescence excitation and emission spectra of solid-state TL-Gd at 25 

°C.
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Figure S23 High-resolution IR spectra of RL, RL-Eu and RL-Tb.

Figure S24 (a) Fluorescence excitation and emission spectra of RL-Eu and (b) 

fluorescence spectra of RL-Eu at different excitation wavelengths (ranging 320-380 

nm) at room temperature in solid-state.
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Figure S25 (a) Fluorescence excitation and emission spectra of RL-Tb and (b) 

fluorescence spectra of RL-Tb at different excitation wavelengths (ranging 320-420 

nm) at room temperature in solid state.

Figure S26 Fluorescence spectra of TL in solution (blue line), doped state (0.5% 

TL@PMMA, green line) and solid-state (red line) at room temperature.
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Figure S27 Fluorescence spectra of TL-Eu in solution (pink line), doped state (0.5% 

TL-Eu@PMMA, red line) and solid-state (white line) at room temperature.

Figure S28 (a) TL-centered (402 nm) and (b) Eu3+-centered (617 nm) fluorescence 

lifetimes of TL-Eu@PMMA film (λex = 350 nm).
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Figure S29 (a) TL-centered (400 nm) and (b) Tb3+-centered (543 nm) fluorescence 

lifetimes of TL-Tb@PMMA film (λex = 350 nm).

Figure S30 Eu3+/Tb3+-centered (617 nm/543 nm) fluorescence lifetimes of TL-

Eu1Tb9@PMMA (λex = 361 nm).
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Figure S31. (a) Photos of 365 nm LED with coated TL-Eu1Tb9@PMMA when LED 

is off and on, (b, c) the corresponding emission spectra and CIE coordinate of WLED, 

respectively.

Figure S32 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Zn2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S33 (a) UV-Vis consecutive titration of TL (40 μM) with Zn2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka.
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Figure S34 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Fe2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S35 (a) UV-Vis consecutive titration of TL (40 μM) with Fe2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S36 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Cr3+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S37 (a) UV-Vis consecutive titration of TL (40 μM) with Cr3+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S38 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Hg2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S39 (a) UV-Vis consecutive titration of TL (40 μM) with Hg2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S40 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Pb2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S41 (a) UV-Vis consecutive titration of TL (40 μM) with Pb2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S42 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Cd2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S43 (a) UV-Vis consecutive titration of TL (40 μM) with Cd2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S44 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Ni2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S45 (a) UV-Vis consecutive titration of TL (40 μM) with Ni2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S46 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Fe3+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S47 (a) UV-Vis consecutive titration of TL (40 μM) with Fe3+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S48 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Cu2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S49 (a) UV-Vis consecutive titration of TL (40 μM) with Cu2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.
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Figure S50 (a) Fluorescence consecutive titration of TL-Eu (50 μM) with Co2+ in 

CHCl3-CH3CN (7:3, V/V) solution, and (b) the calculation of LOD.

Figure S51 (a) UV-Vis consecutive titration of TL (40 μM) with Co2+ in CHCl3-

CH3CN (7:3, V/V) solution, and (b) the result of calculation of Ka by non-linear least 

square fitting, respectively.

The addition of Zn2+, Fe2+ and Cr3+ induced the turning off of Eu-centered emission at 

618 nm, resulting in the blue emission only (Zn2+-induced redshift also can be found). 

Correspondingly, their solution color changed from pink to blue. Besides, Co2+, Fe3+, 

Hg2+, Cu2+, Pb2+, Ni2+ and Cd2+ extremely triggered the quenching of red and blue 

emissions to a different extent. Whereas, other cations (Mg2+, Ca2+, K+ and Na+) 

brought negligible spectral responses. Thus, the visual sensing of TL-Eu solution 

toward multiple heavy metal ions was well conducted, which was further demonstrated 



31

with the help of detailed spectroscopy titration experiments, from Fig. S32 to S51. The 

association constants (Ka) were obtained from absorption spectral titration, while the 

LOD were received based on emission spectral titration, respectively. The Benesi-

Hildebrand plots gave the corresponding stoichiometry (2:1) between ligand and heavy 

metal ions (TL-M). Table S6 represents these physical parameters including the CIE 

coordinates at the endpoint of the titration, showing the Ka values of TL-M are more 

than that of TL-Eu (1.36 × 1013 M1). Therefore, we can reasonably confirm that the 

TL-Eu complex will be dissociated and heavy metal complexes are formed, due to the 

competition coordination, leading to the quenching of red emission. By the way, the 

LODs of these cations were found to be in the range of 0.12-0.65 μM for emission 

spectral titration experiments, respectively.
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Figure S52 (a) The words “Colorful Guizhou” are encryption by scrambled letters, and 

(b) The pattern of colorful painting. Notes: the (a), (b) patterns are invisible in daylight, 

visible at 254 nm, while the right information is extracted under 365 nm irradiation, 

and eliminated when they were immersed in Zn2+ solution (20 µM).



33

3. Supporting tables

Table S1. The excitation-dependent CIE ( , ) coordinates, CCT and CRI values of TL-𝑥 𝑦

Eu, respectively.

λex(nm) X Y CCT(K) CRI
350 0.347 0.333 4753 64.5
354 0.337 0.331 5261 64.3
356 0.337 0.330 5299 63.9
358 0.336 0.329 5335 63.1
360 0.335 0.327 5388 62.4
370 0.321 0.307 5714 58.5
380 0.341 0.331 6023 58.4
384 0.327 0.313 5785 57.5
390 0.325 0.313 5924 58.5
400 0.325 0.313 5945 61.9
410 0.309 0.311 6958 73.9

Table S2. The emission parameters of single Eu3+-doped WLE materials.

constitute λex (nm) CIE
QY

(%)

τ

(ms)
CCT(K) CRI Ref.

TL-Eu 354-360 (0.34, 0.33) a 6.4 0.56 5261-5388 62-64 This work

10%Eu-doped SMOF-1 394 (0.30, 0.34) a 4.3 3606-6839 63-93 [S5]
[Eu2L4(HFAC)](O2CCF3)·2H2O 368 (0.34, 0.33) b -e 0.13 - - [S6]
{[Eu(L2)3(H2O)]·H2O}n 320 (0.34, 0.31) a 11.9 0.27 - - [S7]
Eu(TTA)3−Phen−Fl−TPA−DPA 380 (0.34, 0.33) b 15.3 - 5152 - [S8]

[EuL(NO3)3]n·2C4H8O2

[EuL(NO3)3]n·2C4H8O2@PMMA

285

345

296

(0.33, 0.35) a 

(0.34, 0.32) a

(0.33, 0.31) c
- - - - [S9]

AIE/Eu3+-Doped WLE Ion Gel 254 (0.31, 0.32) d - - - - [S10]
[Eu(tta)3L1] (1)

[Eu(tta)3L2] (3)

343

344

(0.31, 0.33) b

(0.33, 0.31) b

2.6

1.8

0.65

0.65
- - [S11]

EuL

EuL@PMMA

334

275

(0.33, 0.32) a 

(0.33,0.33) c
- - - - [S12]

Eu(TTA)3-TPA-DPA-mCF3 345 (0.35,0.34) a - - 4645 - [S13]
Eu3+@PY-DPA-CB[8] 302 (0.34,0.31) b - - - - [S14]

Eu(1)3

275

250

(270-

272)

(0.32,0.29) a

(0.33,0.28) b

(0.33, 0.28) c
- - - - [S15]

a) Solid state; b) Solvent state; c) film; d) gel; e) No available date.
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Table S3. Relative intensities (contributions) of the ligand-centered bands at 483 nm 

and Eu(III)-centered 5D0 →7FJ (J = 1-4) transitions normalized to the 5D0 →7F2 band in 

the emission spectra of solid-state TL-Eu under excitation at 354-360 nm.

354 nm 356 nm 358 nm 360 nm

483 nm 16.10% 16.20% 16.29% 16.41%

580 nm 5.59% 5.59% 5.50% 5.34%

593 nm 24.32% 24.24% 24.27% 24.14%

618 nm 44.91% 44.87% 44.84% 45.01%

650 nm 1.42% 1.45% 1.45% 1.44%

686 nm 7.65% 7.65% 7.66% 7.66%
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Table S4. The emission parameters (CIE, CCT and CRI) of WLED in this work and 

previously reported ones.

constitute CIE CCT(K) CRI Ref.
TL-Eu (0.32, 0.34) 6192 94 This work
TL-Eu1Tb9@PMMA (0.32, 0.37) 5937 80 This work
Eu0.5Tb0.5-Ln-nanopaper@FB (0.34, 0.36) 5536 86 [S16]
Eu0.045Tb0.955CPOMBA (0.33, 0.34) 5733 73 [S17]
CGB-a:(MOF-Eu)3.5 (0.42, 0.38) 3020 92 [S18]
Eu(DBM)3L-pCH3 (0.36, 0.35) 4234 75 [S19]
CMCh-Eu3+/Tb3+(3/7) (0.36, 0.40) 4705 88.6 [S20]
Tb/Eu@bio-MOF-1(0.06/0.5) (0.36, 0.40) 4725 86.2 [S21]
Eu(TTA)3−Phen−Fl−TPA−DPA (0.34, 0.33) 5152 -a [S8]
Eu0.03Tb0.03La0.94-MOF (0.31, 0.32) 6516 90 [S22]
Poly-Eu-Tb-CNFs (0.39, 0.32) 3347 84 [S23]
Eu(TTA)3-TPA-DPA-mCF3 (0.35, 0.34) 4645 86 [S24]
Eu-3 (0.37, 0.34) 3955 83 [S25]
poly-Eu(TTA)3 (2) (0.32, 0.34) 6201 86.1 [S26]
CQDs-N:Eu3+@MOF-Gd:Eu3+/Tb3+ (0.38, 0.38) 4035 95b [S27]
GGTO:0.6Eu3++(Ba,Sr)2SiO4:Eu2++ 
BAM:Eu2+ (0.38, 0.41) 4331 91.9 [S28]

Ca2Gd0.5Nb0.95W0.04O6:0.5Eu3+ -a 5386 91 [S29]
“G+R+B” WLED (0.34, 0.31) 5308 81.5 [S30]
CaLa4Ti4O15:Eu3+, Gd3+ +
BSS:Eu2+ + BAM:Eu2+ (0.35, 0.35) 4761 93.1 [S31]

KSGO:0.08Eu3++BAM:Eu2+ + 
Sr2SiO4:Eu2+ (0.34, 0.33) 4963 84.7 [S32]

Sr2SiO4Eu2++BaMgAl10O7∶Eu2+ + 
CSO:0.15Eu3+,0.03Sm3+ (0.34, 0.35) 5348 81 [S33]

K2MgGeO4:Eu3+/BaMgAl10O17:Eu2+ 
/(Sr,Ba)2SiO4:Eu2+ = 10/1/3

(0.31, 0.34) 6648 91.7 [S34]

a) No available date; b) The reported highest CRI value.
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Table S5 Excitation wavelength-dependent luminescence lifetimes (τ) and absolute 

fluorescence quantum efficiencies (QY).

Samples λex(nm) 
τ(L)/ns 

(λem/nm)

τ(Ln)/ms 

(λem/nm)

QY 

(%)

TL 355 14.48 (422) – –

TL-Eu 356 10.39 (483) 0.56 (618) 6.40

TL-Eu@PMMA 350 4.95 (402) 1.11 (617) 5.09

TL-Tb@PMMA 350 2.53 (400) 0.66 (543) 2.33

Eu: 1.02 (617) 3.98
TL-Eu1Tb9@PMMA 361 –

Tb: 0.89 (543) 1.52
a) λex and λem represent excitation and emission wavelengths, b) τ(L) and τ(Ln) represent 

ligand and Ln3+-centered lifetimes of corresponding samples.

Table S6 The association constant (Ka), the limit of detection (LOD) for different metal 

ions, and CIE coordinates of corresponding solutions at the endpoint of the titration.

Ka/M LOD/μM CIE (end)

Eu3+ 1.36×1013 - -

Tb3+ 1.13×1014 - -

Zn2+ 3.02×1014 0.41 (0.16, 0.07)

Fe2+ 3.50×1013 0.17 (0.17, 0.04)

Cr3+ 1.42×1013 0.32 (0.26, 0.09)

Hg2+ 3.22×1014 0.22 (0.16, 0.03)

Pb2+ 6.71×1013 0.25 (0.16, 0.02)

Cd2+ 2.00×1015 0.65 (0.15, 0.07)

Ni2+ 9.89×1014 0.19 (0.17, 0.00)

Fe3+ 3.13×1014 0.20 (0.17, 0.02)

Cu2+ 1.12×1016 0.13 (0.17, 0.01)

Co2+ 6.46×1015 0.12 (0.17, 0.01)
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