Supporting Information

Chalcogen atom abstraction from NCE⁻ (E = O, S, Se) and *i*- Pr_2S

by the excited state of a luminescent tricyano osmium(VI)

nitride

Li-Xin Wang,^{a†} Miaomiao Zhou,^{b†} Lu-Lu Liu,^a Jing Xiang,^{*a} Ji-Yan Liu,^a Kai-Chung Lau,^{*b} Tai-Chu Lau^{*b}

a. Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China.<u>xiangjing@yangtzeu.edu.cn</u>

b. Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China. <u>bhtclau@cityu.edu.hk</u>

Table of Contents

	Experimental and Instrumentation	S1	
Table S1	Crystal data and structure refinement details for compounds OsNE (E = O, S, Se)	S2	
Figure S1	ESI/MS of OsNSe (a), OsNS (b) and OsNO (c) in MeOH (-ve mode) (Insets show the expanded isotopic distribution patterns of m/z 617, 571, 555).	S3	
igure S2	UV/vis spectra changes of OsN (3.5 × 10 ⁻⁵ M) with 10 equiv. of PPh ₄ NCS in C ₂ H ₄ Cl ₂ by blue LED (λ > 460 nm).	S3	
igure S3	UV/vis spectra changes of OsN (3.5 × 10 ⁻⁵ M) with 10 equiv. of PPh ₄ NCSe in C ₂ H ₄ Cl ₂ by blue LED (λ > 460 nm).		
igure S4	¹ H NMR spectrum of OsNSe in CDCl ₃ .	S4	
igure S5	¹ H NMR spectrum of OsNS in CDCl ₃ .	S4	
igure S6	¹ H NMR spectrum of OsNO in CDCl ₃ .	S5	
Figure S7	UV/vis spectra changes of OsN (3.5 × 10 ⁻⁵ <i>M</i>) with 1000 equiv. of <i>i</i> - Pr ₂ S in C ₂ H ₄ Cl ₂ by blue LED (λ > 460 nm).	S5	
Figure S8	CV of Os^{III}NH=PPh₃ in CH ₃ CN containing 0.1 M [^{<i>n</i>} Bu ₄ N](PF ₆) with scan rate 100 mV/s.	S5	
Figure S9	Gibbs free energy profile for reaction of Os^vN and the •SCN radical.	S6	

Experimental and Instrumentation

Materials: (PPh₄)[Os^{VI}(N)(L)(CN)₃] (**OsN**) was synthesized according to our recent literature method (HL = 2-(2-hydroxy-5-nitrophenyl)-benzoxazole). Iodosobenzene (PhIO) was synthesized from hydrolysis of iodosylbenzene diacetate. [$^{n}Bu_{4}N$]PF₆ (Aldrich) for electrochemistry was recrystallized three times from boiling ethanol and dried under vacuum at 120 °C for 24 h. Acetonitrile (Aldrich) for electrochemistry was distilled over calcium hydride. HPLC grade CH₂Cl₂ obtained from RCI Labscan with <0.01% water was used for photochemical experiments. All other chemicals were of reagent grade and used without further purification. All manipulations were performed without precaution to exclude air or moisture unless otherwise stated.

Physical measurements: IR spectra were obtained as KBr discs using a Nicolet 360 FTIR spectrophotometer. UV/vis spectra were recorded using a Perkin–Elmer Lamda 19 spectrophotometer in 1 cm quartz cuvettes. Elemental analysis was performed using an Elementar Vario EL Analyzer. Electrospray ionization mass spectrometry (ESI/MS) was performed using a PE-SCIEX API 365 triple quadruple mass spectrometer. Cyclic voltammogram (CV) was performed using a PAR model 273 potentiostat using a glassy carbon working electrode, a saturated calomel electrode (SCE) reference electrode, and a Pt-wire counter electrode with ferrocene (Cp₂Fe) as the internal standard. ¹H NMR spectra were recorded on a Bruker AV400 (400 MHz) FT-NMR spectrometer. Chemical shifts (δ , ppm) are reported relative to tetramethylsilane (Me₄Si).

X-ray crystallography: Measurements were collected on an Oxford CCD diffractometer using graphite-monochromated MoK_a radiation ($\lambda = 0.71073$ Å) for **OsNO**, **OsNS** and **OsNSe**. Details of the intensity data collection and crystal data are given in Supplementary Table S1. Absorption corrections were done by the multi-scan method. The structures were resolved by the heavy-atom Patterson method or direct methods and refined by full-matrix least-squares using SHELX-97 and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated by the program SHELXL-97.^[1] The positions of hydrogen atoms were calculated on the basis of riding mode with thermal parameters equal to 1.2 times that of the associated C atoms and participated in the calculation of final R indices. All calculations were performed using the teXsan crystallographic software. CCDC 2267408-2267410 for **OsNO**, **OsNS**, and **OsNSe** respectively.

Computational methods: Density functional theory (DFT) calculations were performed with the Gaussian 16 quantum chemistry software package.^[2] All molecular geometries were optimized at the B3LYP-D3(BJ)/def2-SVPD level in dichloromethane as solvent.^[3] The solvent effects were taken account by polarization continuum model (PCM).^[4] All optimized geometries were verified by vibrational frequency computations as minima (no imaginary frequency) or transition state (single

imaginary frequency) at the same level of theory.^[5] The transition states (TSs) were also confirmed by viewing normal mode vibrational vector and by intrinsic reaction coordinate calculation.

	OsNO	OsNS	OsNSe
Empirical formula	$C_{40}H_{27}N_6O_5OsP$	$C_{40}H_{27}N_6O_4OsPS$	$C_{40}H_{27}N_6O_4OsPSe$
Formula weight	892.84	908.90	955.80
Temperature [K]	150.00(10)	100.00(10)	293(2)
Crystal system	triclinic	monoclinic	monoclinic
Space group (number)	P1 (2)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)
<i>a</i> [Å]	10.34220(10)	14.4747(11)	17.352(4)
<i>b</i> [Å]	10.6164(2)	22.6180(11)	15.775(3)
<i>c</i> [Å]	17.8604(3)	12.9846(8)	13.259(3)
α [°]	80.2750(10)	90	90
β[°]	78.3850(10)	103.070(7)	92.82(3)
γ [°]	73.6360(10)	90	90
Volume [ų]	1829.87(5)	4140.9(5)	3625.0(13)
Ζ	2	4	4
$ ho_{calc} [gcm^{-3}]$	1.620	1.458	1.751
μ [mm ⁻¹]	7.438	3.213	4.617
F(000)	880	1792	1864
2θ range [°]	8.74 to 148.44	4.21 to 59.23 (0.72 Å)	2.35 to 53.85 (0.78 Å)
	(0.80 Å)		
Index ranges	-12 ≤ h ≤ 12	–19 ≤ h ≤ 15	–22 ≤ h ≤ 21
	$-13 \le k \le 13$	$-29 \le k \le 31$	$-19 \le k \le 19$
	-21 ≤ ≤ 11	-12 ≤ ≤ 18	-16 ≤ l ≤ 16
Reflections collected	19840	19595	81985
Independent	7180	9378	7692
reflections	<i>R</i> _{int} = 0.0441	R _{int} = 0.0677	<i>R</i> _{int} = 0.0774
	R _{sigma} = 0.0440	R _{sigma} = 0.1300	<i>R</i> _{sigma} = 0.0376
Completeness to	99.6 %	96.8 %	100.0 %
θ = 67.679°			
Data / Restraints /	7180/3/478	9378/6/466	7692/0/478
Parameters			
Goodness-of-fit on F^2	1.054	0.998	1.048
Final R indexes	$R_1 = 0.0396$	$R_1 = 0.0554$	$R_1 = 0.0263$
[/≥2σ(/)]	$wR_2 = 0.0977$	$wR_2 = 0.0991$	$wR_2 = 0.0485$
Final R indexes	$R_1 = 0.0451$	$R_1 = 0.0902$	$R_1 = 0.0418$
[all data]	$wR_2 = 0.1000$	$wR_2 = 0.1151$	$wR_2 = 0.0527$

 Table S1. Crystal data and structure refinement details for compounds OsNE (E = O, S, Se).

Figure S1. ESI/MS of **OsNSe**(a), **OsNS**(b) and **OsNO**(c) in MeOH (-ve mode) (Insets show the expanded isotopic distribution patterns of *m*/*z* 617, 571, 555).

Figure S2. UV/vis spectra changes of **OsN** (3.5×10^{-5} M) with 10 equiv. of PPh₄NCS in C₂H₄Cl₂ by blue LED ($\lambda > 460$ nm).

Figure S3. UV/vis spectra changes of **OsN** (3.5×10^{-5} M) with 10 equiv. of PPh₄NCSe in C₂H₄Cl₂ by blue LED ($\lambda > 460$ nm).

Figure S5. ¹H NMR spectrum of OsNS in CDCl₃.

Figure S6. ¹H NMR spectrum of OsNO in CDCl₃.

Figure S7. UV/vis spectra changes of **OsN** (3.5×10^{-5} M) with 1000 equiv. of *i*-Pr₂S in C₂H₄Cl₂ by blue LED ($\lambda > 460$ nm).

Figure S8. CV of **Os^{III}NH=PPh₃** in CH₃CN containing 0.1 M [${}^{n}Bu_{4}N$](PF₆) with scan rate 100 mV/s.

Figure S9. Gibbs free energy profile for reaction of Os^vN and the •SCN radical. The reaction is downhill in energy after the initial recombination of Os^vN and •SCN species to afford the intermediate $[Os^{IV}(L)(CN)_3(N-SCN)]^{2-}$, which then undergoes spontaneous S-CN bond cleavage to produce **OsNS** and CN⁻.

Reference

- 1. Sheldrick, G. Crystal structure refinement with SHELXL. *Acta Crystallographica Section C* **2015**, *71*, 3-8.
- Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652; b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev.
 B 1988, 37, 785–789; c) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7,

3297–3305; d) Schafer, A.; Horn, H.; Ahlrichs, R.; *J. Chem. Phys.* **1992**, *97*, 2571–2577; e) Schafer, A.; Huber, C.; Ahlrichs, R. *J. Chem. Phys.* **1994**, *100*, 5829–5835; f) Grimme, S.; Ehrlich S.; Goerigk, L. J. *Comput. Chem.* **2011**, *32*, 1456–1465; g) Goerigk, L.; Grimme, S. *Phys. Chem. Chem. Phys.* **2011**, *13*, 6670–6688.

- a) Miertuš, S.; Scrocco, E.; Tomasi, J. *Chem. Phys.* 1981, 55,117–129; b) Miertuš, S.; Tomasi, J.
 Chem. Phys. 1982, 65, 239–245.
- 5. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.