Enhancing thermoelectric performance of Ti₂FeNiSb₂ double half-Heusler alloy through excess Ni-induced full-Heusler nanoprecipitates

Rahidul Hasan^{a†}, Yan Gu^{a†}, Se Yun Kim^{b†}, Dong Won Chun^{a,c,d*}, Kyu Hyoung Lee^{a,d*}

^aDepartment of Materials Science and Engineering, Yonsei University, Seoul 03722,

Republic of Korea

^bSamsung Electonics, Suwon 16678, Republic of Korea

^cEnergy Materials Research Center, Korea Institute of Science and Technology, Seoul

02792, Republic of Korea

^dYonsei-KIST Convergence Research Institute

[†]These authors equally contributed this work.

E-mail: chundream98@kist.re.kr(D.W.C.), khlee2018@yonsei.ac.kr(K.H.L.)

Fig. S1. Rietveld Refinement of XRD patterns for $Ti_2Ni_{1+x}FeSb_2$ (x = 0 to 0.1) samples based on TiCoSb phase using Profex software package.

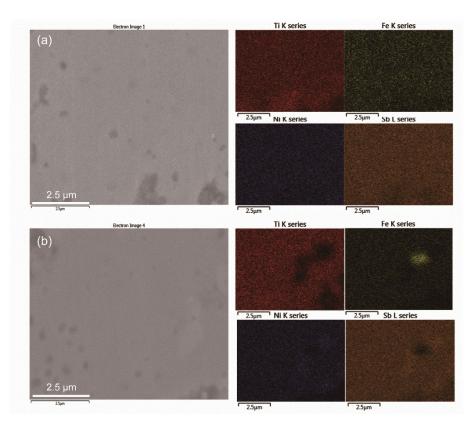


Fig. S2. SEM images and EDS mapping for (a) $Ti_2Ni_{1.05}FeSb_2$ and (b) $Ti_2Ni_{1.1}FeSb_2$ samples.

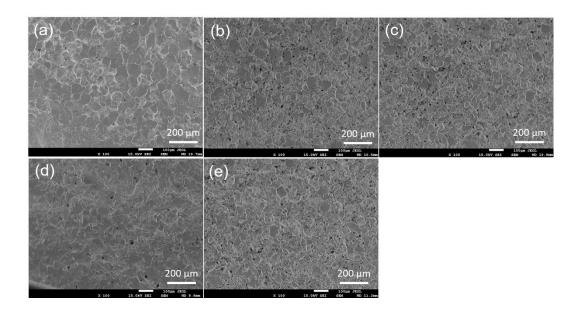


Fig. S3. SEM image for the unpolished fracture structure of (a) $Ti_2FeNiSb_2$ prepared by spark plasma sintering, (b) $Ti_2FeNi_{1.025}Sb_2$, (c) $Ti_2FeNi_{1.05}Sb_2$, (d) $Ti_2FeNi_{1.075}Sb_2$ and (e) $Ti_2FeNi_{1.1}Sb_2$ prepared by cold isostatic pressure.

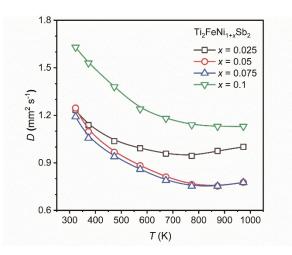


Fig. S4. Temperature dependent thermal diffusivity for $Ti_2FeNi_{1+x}Sb_2$ (x = 0.025, 0.05, 0.075 and 0.1) samples.