Supporting Information

Th@ $C_2(8)$ -C₈₄ and Th@ $C_s(15)$ -C₈₄: impact of actinide metal ions on the electronic structure of actinide endohedral metallofullerenes

Tiantian Cao,^{‡a,b} Qingyu Meng,^{‡b} Ze Fu,^{‡b} Yi Shen,^b Yingjing Yan,^b Qin Wang,^b Bing Zhao,^a Wenxia Wang,^a Khaoula Merimi,^c Antonio Rodríguez-Fortea,^c Yang-Rong Yao,^{*d} and Ning Chen^{*b}

 ^aSuzhou Institute of Trade and Commerce, 287 Xuefu Road, Suzhou, 215009, China
^bCollege of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
^cDepartament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
^dDepartment of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

‡These authors contribute equally to this work.

*Corresponding authors.

Table of Contents

HPLC isolation of two Th@C ₈₄ isomers
Figure S1. HPLC isolation procedures of Th@C ₂ (8)-C ₈₄ S4
Figure S2. HPLC isolation procedures of Th@ $C_s(15)$ -C ₈₄ S5
Figure S3. Positions of thorium in Th@C ₂ (8)-C ₈₄ and Th@C ₅ (15)-C ₈₄ S6
Figure S4. Optimized structures of different Th positions inside the C ₈₄ isomers
Figure S5. Molecular orbitals diagram of Th@ $C_2(8)$ -C ₈₄ S8
Table S1. Occupancies of disordered thorium sites in Th@ $C_2(8)$ -C ₈₄ and Th@ $C_s(15)$ -C ₈₄ S9
Table S2. Closest Th-Cage distances (Å) in Th@C ₂ (8)-C ₈₄ and Th@C _s (15)-C ₈₄ from X-ray structures
and from optimized structures (PBE0/TZP)S9
Table S3. Relative energies of different Th positions in $C_2(8)$ - C_{84} , $C_s(15)$ - C_{84} and $C_s(10)$ - C_{84} S10
Table S4. Crystallographic information of Th@C2(8)-C84 and Th@C3(15)-C84S11
Coordinates (xyz) of optimized structures

High-performance liquid chromatography (HPLC) isolation of two Th@C₈₄ isomers.

Th@C₈₄ was purified by multiple HPLC processes with UV detection at 310 nm using toluene as the mobile phase.

Th@ $C_2(8)$ -C₈₄ was purified by a four-stage HPLC process, as shown in Figure S1. The first stage was performed on a Buckyprep-M column (25 mm × 250 mm, Cosmosil Nacalai Tesque) with a 13 mL/min flow rate. After that, the fraction from 29.2 to 33.1 min was re-injected into a Buckyprep-D column (10 mm × 250 mm, Cosmosil Nacalai Tesque) for the second stage separation with a 4 mL/min flow rate. The fraction from 32.9 to 39.2 min containing Th@ $C_2(8)$ -C₈₄ was collected. The third separation stage was conducted on a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque) with a 4 mL/min flow rate. The fraction from 77.4 to 82.5 min containing Th@ $C_2(8)$ -C₈₄ was collected. The final stage was performed on a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque) with a 4 mL/min flow rate under the recycle mode. After five rounds of recycling isolation, the fraction from 371.2 to 382.8 min containing pure Th@ $C_2(8)$ -C₈₄ was collected and stored for further characterization.

Th@ $C_s(15)$ -C₈₄ was purified by a four-stage HPLC process, as shown in Figure S2. The first stage was performed on a Buckyprep-M column (25 mm × 250 mm, Cosmosil Nacalai Tesque) with a 13 mL/min flow rate. The fraction from 29.2 to 33.2 min was re-injected into a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque) for the second stage separation with a 4 mL/min flow rate. The fraction from 82.9 to 94.6 min containing Th@ $C_s(15)$ -C₈₄ was collected. The third separation stage was conducted on a 5PBB column (10 mm × 250 mm, Cosmosil Nacalai Tesque) with a 4 mL/min flow rate. The fraction from 106.4 to 116.3 min containing Th@ $C_s(15)$ -C₈₄ was collected. The final stage was performed on a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque) with a 4 mL/min flow rate. The fraction from 106.4 to 116.3 min containing Th@ $C_s(15)$ -C₈₄ was collected. The final stage was performed on a Buckyprep column (10 mm × 250 mm, Cosmosil Nacalai Tesque) with a 4 mL/min flow rate under the recycle mode. After three rounds of recycling isolation, the fraction from 243.5 to 253.6 min containing pure Th@ $C_s(15)$ -C₈₄ was collected and stored for further characterization.

Fig. S1 HPLC isolation procedures of $Th@C_2(8)-C_{84}$.

Fig. S2 HPLC isolation procedures of $Th@C_s(15)-C_{84}$.

Fig. S3 Ball and stick representation of disordered Th sites inside (a) Th@ $C_2(8)$ -C₈₄ and (b) Th@ $C_s(15)$ -C₈₄, respectively. For clarity, only the major cage orientations are shown for all EMFs. For Th@ $C_2(8)$ -C₈₄, three positions (Th2, Th3, and Th5) and the mirror-related site (Th2A, Th3A, and Th5A) are observed. For Th@ $C_s(15)$ -C₈₄, two positions (Th1 and Th2) and the mirror-related site (Th1A and Th2A) are observed.

Figure S4. Optimized structures at PBE0/TZP level for different Th positions in Th@ $C_2(8)$ -C₈₄, Th@ $C_s(15)$ -C₈₄ and Th@ $C_s(10)$ -C₈₄. Relative energies (in kcal·mol⁻¹) are indicated (see also Table S4).

Fig. S5 Molecular orbitals (MO) diagram and MO isosurfaces for some frontier MO of Th@ $C_2(8)$ -C₈₄. The occupied MO shows a rather small contribution from Th orbitals, with 7s, 6d, and 5f Th orbitals essentially empty. Therefore, we can consider Th(IV) formally.

Compounds	Fractional occupancy of atom position							
	Th1	Th2/Th2A	Th3/Th3A	Th4	Th5/Th5A			
In@C ₂ (8)-C ₈₄	0.730(3)	0.0616(10)	0.0454(11)	0.037(3)	0.0090(7)			
		Th1/Th1A		Th2/Th	2A			
Th@C₅(15)-C ₈₄		0.3159(10)	0.1841(10)					

Table S1. Occupancies of disordered thorium sites in $Th@C_2(8)-C_{84}$ and $Th@C_s(15)-C_{84}$.

Table S2. Closest Th-Cage distances (Å) in Th@ $C_2(8)$ -C₈₄ and Th@ $C_s(15)$ -C₈₄ from X-ray structures and from optimized structures (PBE0/TZP).

	Th@ <i>C</i> ₂(8)-C ₈	34	Th@ <i>C₅</i> (15)-C ₈₄			
Label	X-ray structures	DFT structures	Label	X-ray structures	DFT structures	
Th1-C1	2.465(17) Å	2.460	Th1-C1	2.313(15) Å	2.462	
Th1-C2	2.374(16) Å	2.472	Th1-C2	2.275(17) Å	2.462	
Th1-C3	2.357(16) Å	2.475	Th1-C3	2.270(18) Å	2.474	
Th1-C4	2.393(14) Å	2.480	Th1-C4	2.417(15) Å	2.474	
Th1-C5	2.530(15) Å	2.517	Th1-C5	2.424(15) Å	2.534	
Th1-C6	2.502(15) Å	2.525	Th1-C6	2.312(15) Å	2.534	

	-	
IPR isomer	Th position	Relative energy
	Sumanene	0.0
<i>C</i> ₂ (8)	Pyracylene	20.0
	THJ	36.2
	Sumanene	0.8
C (15)	Pyracylene (1)	13.3
$C_{S}(13)$	Pyracylene (2)	14.7
	THJ	19.1
	Sumanene	6.2
<i>C</i> _s (10)	THJ (1)	22.1
	THJ (2)	23.9

Table S3. Relative energies at PBE0/TZP level for different Th positions in Th@ $C_2(8)$ -C₈₄, Th@ $C_s(15)$ -C₈₄ and Th@ $C_s(10)$ -C₈₄.^a See also Figure S4.

^a Relative energies in kcal·mol⁻¹. THJ stands for Triple Hexagon Junction

	Th@C ₂ (8)-C ₈₄	Th@C _s (15)-C ₈₄
Formula	C ₁₂₈ H ₅₁ N ₄ Ni Th	C ₁₂₆ H ₅₀ N ₄ Ni Th
Formula weight	1935.47	1910.45
Crystal size, mm ³	0.1×0.08×0.06	0.14×0.1×0.06
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2/ <i>m</i> (No. 12)	<i>C</i> 2/ <i>m</i> (No. 12)
a, Å	27.462(2)	25.3891(17)
b, Å	16.9912(14)	15.1408(11)
c, Å	17.7357(14)	19.9283(14)
α, deg	90	90
β, deg	107.907(4)	94.647(4)
γ, deg	90	90
Volume, Å3	7874.7(11)	7635.5(9)
Z	4	4
ρ, g cm ⁻³	1.633	1.662
F(000)	3860	3808
θ, deg	2.699 to 54.097	1.935 to 53.946
Т, К	122(2)	120(2)
Radiation (λ , mm ⁻¹)	1.34139	1.34139
$R_1 / w R_2$ (all data)	0.1069 / 0.2168	0.1237 / 0.2660
$R_1 / wR_2 (I > 2.0\sigma(I))$	0.0719 / 0.1922	0.0921 / 0.2444
obs reflects	4838	5073
total reflects	7520	7270
R _{int}	0.0841	0.0799
Goodness-of-fit indicator	1.029	1.057
Parameters	1031	999
density, e Å⁻³	-0.772 / 0.793	-1.804 / 1.198

Table S4. Crystallographic information of $Th@C_2(8)-C_{84}$ and $Th@C_s(15)-C_{84}$.

Optimized xyz coordinates for the structures in Figure S4:

				C	-0.859133	0.958075	3.736907
Th@C	C ₂ (8)-C ₈₄ Suma	anene		C	-1.199044	2.167877	2.981073
С	-4.438473	-1.388787	-0.121009	С	-0.148574	3.061210	2.655731
С	-4.385909	-0.632199	-1.352041	С	-0.149181	3.817278	1.446683
С	-3.460520	-1.303216	-2.241925	С	-1.232803	3.764352	0.547209
С	-3.046868	-2.518217	-1.607444	С	-0.929759	3.944060	-0.844302
С	-3.567001	-2.530621	-0.273697	С	0.416461	3.931731	-1.322135
С	-4.406067	-0.694004	1.171967	С	0.457605	3.172726	-2.547913
С	-4.307832	0.753965	1.213631	С	1.595707	2.401932	-2.897646
С	-4.301429	1.517392	-0.015732	С	1.374251	1.129162	-3.585091
С	-4.326410	0.822351	-1.315856	С	2.414295	0.167236	-3.505420
С	-3.341984	1.469578	-2.162610	C	2.119254	-1.236497	-3.475835
С	-2.413348	0.802788	-3.073617	С	2.917250	-1.870769	-2.441694
С	-2.536686	-0.637140	-3.152554	С	2.337531	-2.814707	-1.557525
С	-1.432102	-1.376783	-3.600958	C	2.736474	-2.774567	-0.145032
С	-1.087025	-2.668838	-3.021647	С	1.833457	-3.276113	0.892310
С	-1.848698	-3.211317	-1.967754	C	1.837549	-2.686737	2.231547
С	-1.175318	-3.929574	-0.955727	C	0.660732	-2.786871	3.015836
С	-1.668925	-3.904730	0.409033	C	0.240092	-1.694700	3.871252
С	-2.797227	-3.150724	0.785021	C	1.043839	-0.598150	4.059888
С	-2.787804	-2.466342	2.080624	C	0.492099	0.733594	4.086392
С	-3.505106	-1.212373	2.166175	C	1.541700	1.603393	3.639458
С	-2.909087	-0.103525	2.857191	C	1.229822	2.759072	2.960637
С	-3.318686	1.100846	2.215629	C	2.071802	3.238354	1.898081
С	-2.384732	2.216223	2.143984	C	1.223929	3.912097	0.973989
С	-2.408789	3.002300	0.945283	C	1.511354	3.913192	-0.416560
С	-3.337333	2.583323	-0.105853	C	2.706029	3.280605	-0.840333
С	-2.885573	2.627715	-1.464277	C	2.766239	2.589200	-2.113677
С	-1.711337	3.272900	-1.823674	C	3.737209	1.550173	-1.981547
С	-0.865887	2.728630	-2.836144	C	3.574324	0.360077	-2.667569
С	-1.145026	1.442483	-3.388317	C	3.862096	-0.894358	-2.003681
С	0.000784	0.653665	-3.819176	C	4.282288	-0.898075	-0.677810
С	-0.208577	-0.734635	-3.981317	C	3.712474	-1.834559	0.242532
С	0.850230	-1.675188	-3.740997	C	3.670610	-1.191596	1.546471
С	0.326808	-2.813415	-3.042220	C	2.736191	-1.575647	2.524790
С	1.034481	-3.361132	-1.925931	C	2.345044	-0.556964	3.443092
С	0.252865	-3.965681	-0.919168	C	2.681883	0.813537	3.226902
С	0.668739	-3.950168	0.468186	C	3.502337	1.221858	2.141335
С	-0.519890	-3.987817	1.266033	C	3.208475	2.488648	1.463869
С	-0.530738	-3.383831	2.512330	C	3.570302	2.621211	0.096724
С	-1.677616	-2.609084	2.924630	C	4.222462	1.548371	-0.610882
С	-1.175689	-1.516151	3.739047	C	4.491317	0.347091	0.020875
С	-1.708552	-0.217219	3.618476	C	4.098378	0.165405	1.397896

Th	-2.345222	0.008294	-0.106839	С	-1.921722	2.153689	3.007903
				C	-2.929989	1.167344	2.854339
Th@C	2(8)-C ₈₄ Pyrac	cylene		C	-0.490004	3.773505	1.779786
С	-1.641210	-3.265086	1.892972	C	-0.757783	1.579830	3.612775
С	-2.464300	-3.210601	0.748178	C	0.551246	1.990244	3.216584
С	-3.592276	-2.332992	0.813523	C	0.717944	3.147153	2.340053
С	-4.150085	-1.757812	-0.379794	С	2.968730	2.337282	1.751932
С	-3.613713	-2.094728	-1.607684	С	1.936751	3.265668	1.544371
С	-0.420146	-3.830984	-0.613768	С	1.827106	3.819876	0.189468
С	-1.857902	-3.534364	-0.538948	С	-2.418095	-0.034320	3.447100
С	-2.504284	-3.018809	-1.696515	С	-2.772259	-1.307344	2.914017
С	0.242525	-3.611904	-1.839009	С	-3.705584	-1.351216	1.848218
С	-0.417476	-2.961400	-2.933015	С	-1.798157	-2.332744	2.970266
С	-1.752169	-2.645440	-2.854141	С	-1.083526	0.221843	3.914373
С	0.414568	-3.835990	0.585574	С	-0.088911	-0.789805	3.916628
С	1.852754	-3.540912	0.512931	С	-0.501884	-2.094150	3.555031
С	-0.247791	-3.624976	1.812400	С	1.748308	-2.668918	2.834610
С	2.499877	-3.034823	1.674258	С	0.413154	-2.983502	2.911158
С	-4.356394	0.596253	-1.067753	С	2.847501	1.272777	2.718441
с	-3.754906	0.248405	-2.333038	С	1.622289	1.003766	3.367349
с	-4.548035	-0.394263	-0.098022	С	1.305247	-0.387350	3.716985
с	-3.422803	-1.068345	-2.612498	С	2.220820	-1.391633	3.326987
с	-2.222818	-1.363883	-3.337084	С	4.357238	0.582037	1.072110
с	-2.845684	1.296901	-2.709007	С	3.755230	0.225779	2.334802
с	-1.620854	1.030891	-3.359877	С	3.421215	-1.092513	2.604561
с	-1.305814	-0.358088	-3.719742	С	4.547470	-0.401584	0.095096
с	1.083854	0.249063	-3.912645	С	2.570410	3.164995	-0.856455
с	0.087756	-0.761109	-3.922365	С	3.583545	2.160849	-0.651803
с	0.498845	-2.068657	-3.570335	С	3.867428	1.867010	0.695692
с	-2.565820	3.162265	0.879741	С	2.931665	1.184027	-2.845657
с	-3.580431	2.161191	0.667711	С	1.924834	2.172951	-2.991966
с	-3.864722	1.877729	-0.681919	С	1.760743	3.168120	-2.024323
с	-2.965437	2.354480	-1.734734	С	4.251803	-0.128194	-1.276489
с	-1.932019	3.279686	-1.520290	С	3.773782	1.144144	-1.680921
с	-1.821488	3.823567	-0.161347	С	1.794780	-2.313454	-2.987359
с	0.597385	4.332247	-0.396090	С	3.703626	-1.342953	-1.858128
с	-0.591065	4.329899	0.427931	С	2.770369	-1.289908	-2.923573
с	0.760075	1.605241	-3.601049	С	2.418035	-0.012477	-3.447248
с	-0.548376	2.014683	-3.201875	С	3.610644	-2.111732	1.592209
С	-0.713376	3.165341	-2.316858	С	4.147540	-1.766586	0.366830
с	0.495478	3.785879	-1.752004	C	3.588889	-2.332151	-0.830688
с	-3.772140	1.137216	1.689322	C	2.459627	-3.208564	-0.771776
с	-4.252013	-0.131408	1.275556	C	1.636470	-3.253444	-1.916937
с	-1.756181	3.155682	2.047596	Th	0.002083	2.031604	0.007367

				C	-1.228868	2.163236	2.982727
Th@	<i>C</i> ₂ (8)-C ₈₄ THJ			С	-0.172145	3.043487	2.644410
С	-4.364019	-1.345831	-0.081676	С	-0.169221	3.811795	1.439503
С	-4.297950	-0.584281	-1.313202	С	-1.259800	3.773741	0.545843
С	-3.493533	-1.304088	-2.242560	С	-0.950966	3.955955	-0.839422
С	-3.093988	-2.573139	-1.624451	С	0.398740	3.933658	-1.314392
с	-3.621880	-2.559424	-0.263153	С	0.440496	3.176208	-2.541164
С	-4.323649	-0.678151	1.140174	С	1.576122	2.407611	-2.886619
с	-4.215602	0.766814	1.177943	С	1.351237	1.127228	-3.544516
С	-4.200636	1.496838	-0.001859	С	2.407393	0.157205	-3.488695
С	-4.229244	0.804597	-1.278513	С	2.123597	-1.239908	-3.444670
С	-3.343995	1.505975	-2.166945	С	2.963902	-1.891860	-2.465571
С	-2.439885	0.816237	-3.021746	С	2.341439	-2.844944	-1.586680
С	-2.568006	-0.632938	-3.074933	С	2.753564	-2.767749	-0.157653
С	-1.437591	-1.407356	-3.520769	С	1.829341	-3.231516	0.873076
С	-1.138737	-2.783419	-3.102174	С	1.827970	-2.673607	2.209957
с	-1.969815	-3.324874	-2.035483	С	0.644388	-2.777318	3.007546
с	-1.218278	-3.996536	-0.986137	С	0.218895	-1.691791	3.865610
с	-1.673233	-3.830546	0.372286	С	1.015955	-0.594410	4.037333
с	-2.850063	-3.099174	0.783934	с	0.467770	0.735679	4.084859
с	-2.827935	-2.428762	2.082971	С	1.510145	1.592533	3.638466
с	-3.538716	-1.203915	2.218469	С	1.207110	2.745465	2.954414
с	-2.971473	-0.088357	2.932233	с	2.054025	3.229495	1.899386
с	-3.340294	1.129255	2.250635	С	1.197669	3.900227	0.973948
с	-2.429124	2.214320	2.148637	С	1.496311	3.910459	-0.417680
с	-2.447748	3.020747	0.932942	С	2.696599	3.289766	-0.841096
с	-3.344312	2.636253	-0.111579	С	2.758006	2.593168	-2.104419
с	-2.932943	2.708175	-1.489559	С	3,729665	1.556867	-1.976980
с	-1.749974	3.317800	-1.834156	С	3.568837	0.353701	-2.667025
с	-0.892948	2.749259	-2.839997	С	3.881049	-0.898710	-2.017427
C	-1.155647	1.461717	-3.352965	C	4.318414	-0.891265	-0.685345
с	-0.010105	0.664062	-3.730187	С	3,730527	-1.832399	0.228354
C	-0.221671	-0.752237	-3.841461	C	3.670513	-1.195030	1.534820
c	0.833432	-1.698479	-3.666154	C	2.732258	-1.575421	2.509841
C	0.322781	-2.935953	-3.122001	C	2.336231	-0.560245	3.430294
c	1.104628	-3.508155	-2.001608	C	2.664620	0.798934	3.213967
c	0.250842	-4.059445	-0.962504	C	3.486075	1.210837	2.131026
C	0.644658	-3.895246	0.422113	C	3,187650	2.485353	1.456727
C	-0.535425	-3.886505	1.220007	C	3,563730	2.623204	0.095333
c	-0.544767	-3,341787	2.500563	C	4,220681	1.558626	-0.617339
c	-1.695617	-2.581134	2,930756	c r	4,498902	0,343551	0.007740
c	-1, 208305	-1.515010	3,741035	c r	4 090281	0.163104	1,386555
c	-1 762769	-0 200423	3 652138	ть	-0 28/67/	-1 638866	-1 12/022
c c	-1.702700	-0.200423 0 966701	3 7/5000	111	-0.2040/4	-1.020000	-1,124002
C	-0.900055	0.900291	7.147020				

Th@	C _s (15)-C ₈₄ Sum	nanene		С	-1.230093	1.627639	3.475438
С	-4.279714	-1.461403	-0.204436	С	-0.128183	2.477297	3.255103
С	-4.356967	-0.502760	-1.284705	С	-0.113139	3.409146	2.182012
С	-3.463920	-0.952075	-2.320051	С	-1.164952	3.483873	1.233611
С	-2.870996	-2.190457	-1.901436	С	-0.818516	3.864330	-0.138861
С	-3.290912	-2.461503	-0.566580	С	0.538566	4.111570	-0.454831
С	-4.282308	-0.996335	1.168606	С	1.082775	3.714375	-1.724792
С	-4.285418	0.447773	1.459557	С	0.267981	3.255696	-2.730564
С	-4.286187	1.408308	0.373568	С	0.676731	2.146988	-3.569106
С	-4.360335	0.942532	-0.993489	С	1.857703	1.413653	-3.294903
С	-3.469948	1.761567	-1.773292	С	1.860760	-0.018916	-3.583333
С	-2.762032	1.336543	-2.957277	C	2.762826	-0.906791	-2.844219
С	-2.758797	-0.098762	-3.246512	С	2.389567	-2.263081	-2.602480
С	-1.655482	-0.660785	-3.902882	C	2.729788	-2.933235	-1.390694
С	-1.135523	-1.971016	-3.552890	C	3.511260	-2.315213	-0.381403
С	-1.662457	-2.697905	-2.467145	C	3.213993	-2.596228	1.022821
С	-0.802088	-3.512271	-1.625389	С	2.109026	-3.449769	1.325513
С	-1.149072	-3.694830	-0.213060	С	1.253325	-3.205245	2.430133
С	-2.350107	-3.099050	0.347591	С	1.507886	-2.145915	3.343727
С	-2.389604	-2.680928	1.720121	С	0.385417	-1.532270	3.972716
С	-3.333261	-1.612999	2.065648	С	0.382332	-0.124482	4.256295
С	-2.903721	-0.608706	2.987865	С	1.501675	0.689853	3.915296
С	-3.338177	0.672693	2.526181	С	1.241778	2.019237	3.482923
С	-2.399380	1.795136	2.622174	С	2.095467	2.676138	2.559744
С	-2.363058	2.712371	1.518680	С	1.269918	3.582965	1.798988
С	-3.301955	2.474873	0.428041	С	1.586270	3.899095	0.504211
С	-2.881999	2.743832	-0.907265	С	2.716196	3.255027	-0.143835
С	-1.675938	3.435657	-1.231052	С	2.377703	3.104875	-1.520761
С	-1.146916	3.188259	-2.513216	С	2.756382	1.949537	-2.268511
С	-1.661710	2.113728	-3.343756	С	3.654677	1.078101	-1.617789
С	-0.528385	1.511781	-4.004520	С	3.657966	-0.351542	-1.905948
С	-0.525360	0.154972	-4.277841	С	4.057380	-1.046083	-0.729979
С	0.682753	-0.594019	-4.121054	С	4.326189	-0.046394	0.278439
С	0.279617	-1.942511	-3.777703	С	4.052154	-0.312688	1.596577
С	1.097241	-2.751466	-3.027573	С	3.512410	-1.599959	1.990418
С	0.555801	-3.612056	-2.011164	С	2.672007	-1.366551	3.114168
С	1.603331	-3.783023	-1.043740	С	2.668899	0.065153	3.402717
С	1.286799	-3.994597	0.272125	С	3.507268	0.719210	2.457666
С	-0.096727	-3.988765	0.691167	С	3.203856	2.011290	1.951185
С	-0.114924	-3.545229	2.041405	С	3.501099	2.297491	0.547984
С	-1.220239	-2.852028	2.572633	C	4.052205	1.264697	-0.264292
С	-0.950495	-1.921637	3.631117	Th	-2.288686	-0.024727	0.099418
С	-1.762545	-0.764205	3.771917				
с	-0.955559	0.360969	4.091183				

Th@C	C _s (15)-C ₈₄ Pyra	acylene (1)		C	0.994639	-3.151172	2.264583
С	-3.518676	0.289265	-2.366555	C	0.782085	-1.022132	3.637165
С	-4.213205	-0.189767	-1.175849	C	-0.607227	-1.312503	3.754916
С	-1.186824	1.027662	-3.892405	C	-1.924343	2.025620	-3.152146
С	-1.584098	-0.295094	-3.836805	C	-3.057020	1.679320	-2.380843
С	-2.759442	-0.670294	-3.100573	C	-3.273818	2.465314	-1.175550
С	0.199162	1.350016	-3.921086	C	-2.202448	3.319752	-0.716970
С	-0.605951	-1.336877	-3.746852	C	-1.010310	3.620907	-1.464110
С	0.782647	-1.046021	-3.630802	C	-0.946767	3.017992	-2.735093
С	1.199397	0.344125	-3.739107	C	1.476428	3.009176	-2.633749
С	3.284370	-0.213626	-2.550840	C	0.320995	2.639406	-3.290446
С	2.451845	0.766543	-3.128354	C	1.436546	3.758916	1.391405
С	2.593588	2.086820	-2.602640	C	0.199381	3.980904	0.715393
С	-2.540514	-2.023134	-2.654135	C	0.199801	3.975654	-0.741120
С	-3.102882	-2.470659	-1.437445	C	1.436824	3.749922	-1.415256
С	-3.912320	-1.525649	-0.707805	C	-2.203887	3.325686	0.695811
С	-2.406477	-3.457248	-0.709373	C	-0.947352	3.035861	2.714638
С	-1.219554	-2.428975	-3.051762	C	-1.010740	3.631623	1.440406
С	-0.456701	-3.324171	-2.262900	C	3.341844	2.359687	1.408627
С	-1.120390	-3.926532	-1.155196	С	2.632361	3.389292	0.675806
С	0.995272	-4.222390	0.014030	C	2.632408	3.385022	-0.697219
С	-0.383118	-4.287167	0.014074	C	4.105979	0.080116	1.409960
С	2.900483	-1.610839	-2.518618	C	4.036345	1.318024	0.728475
С	1.612203	-2.023716	-2.934067	C	0.320042	2.660758	3.273111
С	0.995245	-3.165795	-2.244045	С	3.283754	-0.197392	2.552033
С	1.695018	-3.754306	-1.155569	C	2.451019	0.786670	3.123117
С	-2.407581	-3.453101	0.731167	C	2.593092	2.103567	2.589066
С	-3.103836	-2.461684	1.451881	C	1.476004	3.026589	2.614399
С	-3.914554	-1.521171	0.717208	C	2.965614	-3.245316	0.730356
С	-2.540594	-2.004599	2.664756	C	3.564182	-2.201014	1.419338
С	-1.220322	-2.408400	3.066753	C	2.900013	-1.594322	2.529132
С	-0.457179	-3.309436	2.284000	C	1.611487	-2.004358	2.947119
С	-1.120618	-3.918902	1.180531	C	1.198610	0.368207	3.736452
С	-2.759870	-0.648751	3.100902	C	0.198030	1.375962	3.912158
С	-3.524402	0.306489	2.364393	C	4.270066	-1.169853	-0.687463
С	-4.220649	-0.182470	1.177539	C	3.564884	-2.210318	-1.405358
С	-4.503852	0.632089	-0.002811	C	2.965862	-3.250287	-0.709432
С	-4.009307	2.005031	-0.006982	C	4.269539	-1.165082	0.694569
С	-1.584682	-0.269741	3.835882	C	3.341639	2.350288	-1.423341
С	-1.187515	1.053154	3.883610	C	4.036387	1.313287	-0.736643
С	-1.925702	2.045945	3.136601	С	4.106077	0.071026	-1.410582
С	-3.062158	1.697256	2.370399	Th	-2.100148	0.514817	0.015624
С	-3.278712	2.477463	1.160415				
С	1.694588	-3.746956	1.180091				

Th@C	ς̃(15)-C ₈₄ Pyra	acylene (2)		C	-1.249551	1.593805	3.451871
С	-4.167481	-1.432444	-0.174011	C	-0.111628	2.420639	3.174851
С	-4.255928	-0.487285	-1.257537	C	-0.084989	3.444343	2.175851
С	-3.475167	-0.992838	-2.362906	C	-1.190904	3.483769	1.210703
С	-2.907160	-2.239364	-1.952861	C	-0.853036	3.852567	-0.140771
С	-3.277498	-2.480865	-0.566445	C	0.557191	4.116791	-0.440536
С	-4.169989	-0.990423	1.146411	C	1.066886	3.644623	-1.696874
С	-4.164882	0.425332	1.422198	C	0.255694	3.230965	-2.751260
С	-4.161828	1.334020	0.382448	C	0.665871	2.140710	-3.574957
С	-4.245903	0.874692	-0.988116	C	1.854557	1.395786	-3.307917
С	-3.491096	1.778219	-1.813064	C	1.865994	-0.024757	-3.613684
С	-2.789407	1.322097	-2.952734	C	2.764652	-0.908428	-2.876032
С	-2.783375	-0.116966	-3.241765	C	2.384681	-2.253901	-2.628832
С	-1.659891	-0.676539	-3.905775	C	2.710792	-2.924708	-1.404832
С	-1.152721	-1.960041	-3.567575	C	3.483972	-2.304998	-0.393135
С	-1.694906	-2.716022	-2.486044	C	3.179716	-2.588565	1.018705
С	-0.821150	-3.506334	-1.629547	С	2.087992	-3.445110	1.313567
С	-1.157522	-3.675970	-0.220405	C	1.219723	-3.198610	2.437564
С	-2.373602	-3.078914	0.336265	С	1.486988	-2.150897	3.355677
С	-2.417289	-2.660132	1.744107	С	0.366712	-1.537202	3.977338
С	-3.326719	-1.631753	2.105544	С	0.375702	-0.124429	4.265843
С	-2.951880	-0.622369	3.080798	С	1.487646	0.659546	3.913152
С	-3.333660	0.665594	2.577235	C	1.223273	1.981657	3.421560
С	-2.432518	1.758927	2.630322	С	2.117309	2.730593	2.570739
С	-2.382560	2.692446	1.491526	С	1.316490	3.729431	1.881455
С	-3.283779	2.472587	0.420207	С	1.660569	4.053099	0.515420
С	-2.918152	2.774029	-0.936188	С	2.750921	3.320237	-0.119319
С	-1.705647	3.428081	-1.243398	С	2.349320	3.062582	-1.494660
С	-1.158338	3.153963	-2.539857	С	2.740236	1.906079	-2.266644
С	-1.674336	2.107305	-3.365941	С	3.669118	1.055659	-1.650550
С	-0.544202	1.504507	-4.023289	C	3.669570	-0.346908	-1.932329
С	-0.524613	0.149438	-4.291890	С	4.049912	-1.043522	-0.739013
С	0.682557	-0.598167	-4.164791	C	4.308282	-0.054191	0.270042
С	0.276528	-1.931655	-3.797086	C	4.039259	-0.334092	1.606252
С	1.087424	-2.735310	-3.045323	C	3.510661	-1.601261	1.998270
С	0.543986	-3.596210	-2.014951	С	2.662571	-1.366166	3.136993
С	1.582975	-3.767240	-1.061992	C	2.664785	0.033185	3.430060
С	1.267869	-3.980089	0.268239	C	3.492354	0.701301	2.449840
С	-0.106696	-3.958596	0.681200	C	3.256913	2.019175	1.963077
С	-0.127631	-3.525033	2.054685	C	3.563023	2.311203	0.567324
С	-1.238946	-2.846924	2.591591	С	4.046437	1.247520	-0.255839
С	-0.972155	-1.929729	3.653508	Th	0.934915	1.755752	0.547054
С	-1.799151	-0.774542	3.816569				
С	-0.971141	0.364242	4.083617				

Th@C	C _s (15)-C ₈₄ THJ			C	-1.272620	1.620370	3.502145
С	-4.170147	-1.397782	-0.158511	C	-0.162944	2.454526	3.270366
С	-4.256949	-0.444439	-1.248311	С	-0.136616	3.393010	2.169477
С	-3.496113	-0.959461	-2.360107	С	-1.180825	3.462480	1.222359
С	-2.922165	-2.207925	-1.937230	C	-0.836822	3.842868	-0.148376
С	-3.295133	-2.456394	-0.564173	C	0.525364	4.077318	-0.466345
С	-4.181672	-0.961395	1.154920	С	1.079324	3.692675	-1.751179
С	-4.184953	0.453832	1.443679	С	0.264676	3.230697	-2.755319
С	-4.180877	1.369841	0.394833	С	0.674750	2.146137	-3.600282
С	-4.263466	0.911252	-0.972116	С	1.858813	1.411499	-3.324019
С	-3.487171	1.807642	-1.800992	С	1.867034	-0.019509	-3.618850
С	-2.797134	1.341373	-2.950060	С	2.751397	-0.899460	-2.876751
С	-2.798691	-0.097772	-3.240027	С	2.385478	-2.246926	-2.625553
С	-1.679227	-0.658875	-3.914932	С	2.732061	-2.924750	-1.392120
С	-1.157610	-1.933124	-3.556253	С	3.521709	-2.336484	-0.352529
С	-1.706641	-2.685924	-2.474638	С	3.357782	-2.713519	1.076280
с	-0.830278	-3.463667	-1.614110	С	2.161703	-3.525150	1.387236
С	-1.168357	-3.610341	-0.223042	С	1.261344	-3.245094	2.508687
с	-2.381190	-3.050452	0.337615	С	1.498813	-2.195251	3.474320
С	-2.428696	-2.639808	1.750434	С	0.358219	-1.542212	3.990983
с	-3.341589	-1.615018	2.122879	С	0.326399	-0.115595	4.281646
с	-2.976800	-0.625989	3.098950	С	1.434107	0.690183	3.940333
с	-3.350200	0.679628	2.581027	С	1.180735	2.009584	3.509218
с	-2.446377	1.772105	2.641694	С	2.046464	2.669631	2.553284
с	-2.397176	2.698098	1.504075	С	1.234849	3.577941	1.801221
с	-3.293872	2.487157	0.433717	С	1.563122	3.880825	0.487478
с	-2.920817	2.796957	-0.939050	С	2.691481	3.249691	-0.149157
с	-1.708535	3.441455	-1.245301	С	2.369187	3.099497	-1.555904
С	-1.160898	3.158856	-2.531807	С	2.746743	1.947601	-2.289757
С	-1.672758	2.110639	-3.347117	С	3.643554	1.055137	-1.630510
С	-0.540247	1.502875	-4.023183	С	3.645283	-0.337785	-1.913986
С	-0.543521	0.158083	-4.294716	С	4.027146	-1.036891	-0.714302
С	0.673824	-0.600096	-4.154133	С	4.297052	-0.049948	0.284485
С	0.272268	-1.917327	-3.796275	С	4.017110	-0.353363	1.638505
С	1.093794	-2.724810	-3.029247	С	3.624765	-1.667060	2.095958
С	0.550900	-3.572845	-2.004066	С	2.700721	-1.415084	3.236459
С	1.589047	-3.725265	-1.049158	C	2.587814	0.015372	3.402715
С	1.285506	-3.912723	0.300803	С	3.399300	0.663980	2.427551
С	-0.083099	-3.838517	0.691621	С	3.113309	1.989775	1.934329
С	-0.105180	-3.438775	2.047012	С	3.446347	2.284335	0.540955
с	-1.260492	-2.807845	2.600494	С	4.017583	1.237101	-0.252221
с	-1.008672	-1.929430	3.675916	Th	1.500791	-1.165132	1.044660
с	-1.831822	-0.778276	3.848682				
с	-1.004600	0.361694	4.132666				

Th@C _s (10)-C ₈₄ Sumanene			С	-0.200462	3.153173	2.690992	
С	-4.421840	-1.389062	0.006833	С	-0.197033	3.879652	1.460375
С	-4.418624	-0.654234	-1.237719	С	-1.290805	3.811543	0.563944
С	-3.508274	-1.324494	-2.137096	С	-0.991620	3.943903	-0.821044
С	-3.058667	-2.522089	-1.497542	С	0.354679	3.927192	-1.307390
С	-3.513823	-2.502679	-0.141946	С	0.380327	3.148887	-2.517621
С	-4.389630	-0.678051	1.281576	С	1.502445	2.372264	-2.871010
С	-4.354180	0.790522	1.288558	С	1.271542	1.103928	-3.560803
С	-4.350815	1.520649	0.051887	С	2.304883	0.137515	-3.484513
С	-4.382754	0.805521	-1.230497	С	2.027200	-1.261518	-3.513894
С	-3.413719	1.449028	-2.093715	С	2.857013	-1.943432	-2.532617
с	-2.499449	0.781809	-3.007404	C	2.335028	-3.035383	-1.785742
С	-2.617904	-0.666009	-3.081213	С	2.851240	-3.163474	-0.466658
с	-1.527998	-1.401793	-3.555830	C	2.015852	-3.691523	0.600904
с	-1.174050	-2.709966	-3.011041	C	2.290285	-2.990814	1.812882
с	-1.889971	-3.231180	-1.913063	C	1.254200	-2.587915	2.691377
с	-1.179873	-3.942866	-0.923688	С	1.484827	-1.371996	3.469754
с	-1.539234	-3.787240	0.483398	C	0.362285	-0.684772	3.974470
с	-2.628887	-3.013620	0.894098	С	0.339542	0.751053	4.071722
С	-2.513772	-2.250180	2.126798	С	1.444140	1.530496	3.628166
с	-3.425784	-1.125541	2.265777	С	1.157066	2.766235	2.977432
с	-2.977606	0.031176	2.975736	С	1.996989	3.261679	1.931419
с	-3.414723	1.212821	2.301850	С	1.162783	3.940684	0.988982
с	-2.494875	2.346135	2.203891	С	1.455631	3.912738	-0.406299
с	-2.491656	3.069172	0.979551	С	2.632631	3.254941	-0.832893
С	-3.408452	2.610012	-0.063874	С	2.670486	2.543635	-2.069816
с	-2.965790	2.628645	-1.422240	С	3.607271	1.466406	-1.898855
с	-1.790160	3.262531	-1.797778	С	3.433221	0.298831	-2.591855
с	-0.959735	2.708877	-2.801944	С	3.729724	-0.974938	-1.960791
с	-1.240673	1.421865	-3.345630	С	4.133532	-1.031275	-0.597212
С	-0.098173	0.631729	-3.790742	С	3.724214	-2.197415	0.108787
С	-0.307966	-0.756324	-3.954063	С	3.422004	-2.133993	1.527783
С	0.753180	-1.707184	-3.769369	С	3.595605	-0.963337	2.215646
С	0.233819	-2.879894	-3.106308	С	2.655576	-0.590456	3.237522
С	0.982769	-3.525765	-2.079264	С	2.620959	0.836346	3.263023
С	0.228121	-4.111477	-1.020863	С	3.488677	1.340257	2.205357
С	0.741774	-4.127188	0.328552	С	3.148666	2.528211	1.501530
С	-0.322501	-3.827165	1.245879	С	3.494725	2.570090	0.122859
С	-0.115240	-3.013989	2.383051	С	4.082778	1.451735	-0.529533
С	-1.257819	-2.240015	2.855393	С	4.317791	0.219980	0.141893
С	-0.977800	-1.142977	3.720801	C	4.076999	0.227546	1.543740
С	-1.805375	0.005657	3.717242	Th	-2.368788	0.003127	-0.004931
С	-1.004654	1.188179	3.845727				
с	-1.297656	2.337744	3.059659				

Th@ <i>C</i> _s (10)-C ₈₄ THJ (1)			С	-0.239723	3.136423	2.688065	
С	-4.308753	-1.342409	0.041227	С	-0.236186	3.867762	1.447274
С	-4.305398	-0.601843	-1.213161	С	-1.341215	3.811262	0.548534
С	-3.527861	-1.331705	-2.161272	С	-1.029467	3.951185	-0.829387
С	-3.114018	-2.553175	-1.516331	С	0.327685	3.927290	-1.304838
С	-3.533477	-2.526926	-0.136993	С	0.358614	3.140490	-2.522836
С	-4.279706	-0.664355	1.245412	С	1.459857	2.334736	-2.836202
С	-4.261264	0.781112	1.256849	С	1.249657	1.083894	-3.539237
С	-4.257752	1.487939	0.059534	С	2.304902	0.117132	-3.467933
С	-4.272538	0.779959	-1.200629	С	2.030849	-1.277125	-3.507316
С	-3.403166	1.479356	-2.122705	С	2.855270	-1.962198	-2.551331
С	-2.527423	0.792347	-3.004836	С	2.322800	-3.031702	-1.783686
С	-2.645471	-0.663986	-3.061380	С	2.849493	-3.188802	-0.474208
С	-1.545331	-1.407294	-3.545604	С	2.019360	-3.692983	0.583834
С	-1.210685	-2.695153	-3.009972	С	2.290080	-2.985722	1.786766
С	-1.937158	-3.229248	-1.912267	С	1.232108	-2.578398	2.663144
С	-1.216596	-3.934335	-0.911559	С	1.441892	-1.359134	3.419494
С	-1.556565	-3.780507	0.473400	С	0.340263	-0.693124	3.969680
С	-2.656380	-2.994702	0.885933	C	0.312405	0.753547	4.071273
С	-2.541958	-2.242371	2.134511	С	1.392241	1.541166	3.638388
С	-3.415882	-1.136140	2.306717	С	1.097451	2.764202	2.982869
С	-3.015855	0.023001	3.048096	C	1.969767	3.242576	1.920762
С	-3.418581	1.217599	2.334803	С	1.103110	3.941802	0.984395
С	-2.543720	2.325484	2.219516	С	1.403870	3.924909	-0.401895
С	-2.540216	3.072510	0.954177	С	2.604912	3.232197	-0.774190
С	-3.411596	2.640422	-0.075364	С	2.616084	2.477794	-1.980320
С	-3.002946	2.687401	-1.464134	С	3.586943	1.448128	-1.836268
С	-1.828633	3.301354	-1.824932	С	3.430625	0.278244	-2.581903
С	-0.977272	2.709655	-2.816288	С	3.727267	-0.969995	-1.962184
С	-1.249262	1.428521	-3.354768	С	4.129311	-1.009988	-0.584708
С	-0.110718	0.626770	-3.783544	С	3.721920	-2.196280	0.113695
С	-0.320040	-0.770793	-3.951169	С	3.419172	-2.134972	1.504732
С	0.734097	-1.715310	-3.764628	С	3.574426	-0.916741	2.168580
С	0.214095	-2.875940	-3.108223	С	2.600503	-0.543035	3.135394
С	0.952641	-3.515742	-2.073531	С	2.592968	0.877395	3.214678
С	0.208255	-4.110953	-1.016704	С	3.567505	1.428241	2.280405
С	0.722564	-4.126637	0.318935	С	3.233590	2.658380	1.578791
С	-0.334703	-3.831334	1.231637	С	3.573830	2.677814	0.163927
С	-0.128026	-3.009776	2.375073	С	4.178501	1.497873	-0.521587
С	-1.266726	-2.244456	2.865518	С	4.429837	0.238515	0.152913
С	-0.995781	-1.154940	3.728531	С	4.171689	0.256809	1.580242
С	-1.844521	0.000774	3.764731	Th	1.985530	0.815930	0.485730
С	-1.042894	1.184511	3.856767				
С	-1.348329	2.324365	3.067611				

Th@ <i>C</i> _s (10)-C ₈₄ THJ (2)			С	-0.239122	3.199604	2.764433	
С	-4.290470	-1.340874	0.035092	С	-0.225005	3.781234	1.450886
С	-4.306368	-0.609249	-1.215733	С	-1.333107	3.771783	0.535958
С	-3.520806	-1.328136	-2.152524	С	-1.012967	3.929675	-0.828896
С	-3.098914	-2.562976	-1.511668	С	0.351767	3.897404	-1.316164
С	-3.508602	-2.534068	-0.143885	С	0.379082	3.141252	-2.528929
С	-4.254083	-0.661291	1.238496	С	1.503266	2.357425	-2.877968
С	-4.261013	0.792128	1.254704	C	1.268832	1.099412	-3.565567
С	-4.284543	1.494048	0.042520	С	2.310988	0.124258	-3.490540
С	-4.282313	0.788378	-1.198193	С	2.025674	-1.268582	-3.518512
С	-3.404907	1.483393	-2.119533	С	2.859267	-1.962987	-2.544408
С	-2.523216	0.799186	-2.995684	С	2.342362	-3.047323	-1.799696
С	-2.637147	-0.658381	-3.051974	С	2.869568	-3.190705	-0.479550
С	-1.534490	-1.390959	-3.539176	С	2.042273	-3.714264	0.581956
С	-1.184232	-2.685290	-2.996661	С	2.324128	-3.010300	1.794077
С	-1.915606	-3.229848	-1.906436	С	1.271158	-2.586766	2.662816
С	-1.182604	-3.937162	-0.917608	C	1.505533	-1.377250	3.429146
С	-1.522509	-3.783846	0.476316	C	0.378239	-0.653828	3.948124
С	-2.628038	-3.003137	0.880564	C	0.343559	0.798414	4.211393
С	-2.501452	-2.236638	2.112992	C	1.495224	1.574886	3.775571
С	-3.393635	-1.128373	2.299367	C	1.148135	2.808850	3.071259
С	-2.993581	0.033473	3.009040	C	1.949199	3.175704	1.922825
С	-3.448872	1.234364	2.334671	С	1.116786	3.815512	0.968412
С	-2.531379	2.333536	2.232009	C	1.441025	3.861763	-0.425384
С	-2.542207	3.066508	0.943622	C	2.635598	3.234702	-0.841160
С	-3.417493	2.642756	-0.084666	С	2.680037	2.525286	-2.076580
С	-3.002147	2.694713	-1.465589	C	3.620951	1.454108	-1.907375
С	-1.819348	3.298035	-1.825950	C	3.431071	0.279081	-2.597820
С	-0.969002	2.714157	-2.819787	С	3.739530	-0.992111	-1.971792
С	-1.244090	1.438018	-3.352245	C	4.139269	-1.050619	-0.609297
С	-0.100445	0.640423	-3.787916	С	3.742544	-2.219321	0.100286
С	-0.319466	-0.751151	-3.938734	С	3.449895	-2.163910	1.519425
С	0.744675	-1.705815	-3.759591	C	3.616874	-0.981648	2.217223
С	0.227412	-2.876339	-3.106909	C	2.684232	-0.616808	3.229625
С	0.978641	-3.525506	-2.085679	C	2.596410	0.840814	3.254404
С	0.233445	-4.116845	-1.027926	C	3.483281	1.320715	2.195176
С	0.755365	-4.132050	0.310775	C	3.144810	2.494770	1.483309
С	-0.308927	-3.851061	1.235534	C	3.494064	2.559719	0.115861
С	-0.096908	-3.012631	2.352851	C	4.087937	1.431916	-0.542308
С	-1.229121	-2.226254	2.803075	C	4.318281	0.205398	0.132932
С	-0.932700	-1.091123	3.625567	C	4.081651	0.207924	1.542544
С	-1.793295	0.044125	3.705004	Th	0.124029	0.921008	1.792898
С	-1.035604	1.241354	3.968633				
С	-1.397893	2.419605	3.158698				