Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

1

Supporting Information

2 Photoresponsive CuS@Polyaniline nanocomposites: An excellent synthetic

3 bactericide against several multidrug-resistant pathogenic strains

- 4 Basit Ali Shah^{1,2*}, Asma Sardar², Weiliang Peng¹, Syed Taj Ud Din³, Syed Hamayoun⁴,
- 5 Shaobo Li¹, Bin Yuan^{1,5}
- 6
- 7 ¹School of Materials Science & Engineering, South China University of Technology (SCUT)
- 8 Guangzhou 510640, People's Republic of China
- 9 ²Department of Chemistry Hazara University Mansehra, Pakistan
- 10 ³Department of Physics, Dongguk University, Seoul 04620, Korea
- 11 ⁴Faculty of Animal Husbandry and Veterinary Sciences, Department of Pathology, The University
- 12 of Agriculture, Peshawar 25130, Pakistan
- 13 ⁵GuangDong Engineering Technology Research Center of Advanced Energy Storage Materials,
- 14 Guangzhou 510640, P. R. China
- 15
- 16
- 17 *Corresponding author: <u>basitalimrz@gmail.com or apsheng@scut.edu.cn</u>
- 18

19

2 Figure S1 EDS spectrum with inset table of atomic/weight elemental percentages of the CuS@PANI NCs

3

4 Figure S2 ESR spectra of (a) DMPO-'O2- and (b) DMPO-OH' for CuS and CuS@PANI samples under Dark

5 conditions and 20 min of visible light irradiations

6

7 Table S1 The relative bactericidal effectiveness of the as-prepared CuS@PANINCs with reported literatures

Materials	MIC (µg·ml ⁻¹)	Effectiveness	Pathogens
MoS ₂ @Polydopamine-Ag ⁸⁶	125	>95 %	S. aureus, E. coli
PEG@CuS/g-C ₃ N ₄ ¹	200	> 95 %	S. aureus, E. coli
Polydopamine@SnS/g-C ₃ N ₄ ³⁸	45	> 90 %	A. fumigatus, and A. flavus,
			E. faecalis, P. aeruginosa.
CuS/protonated g-C ₃ N ₄ ³⁷	40 %	>98 %e	S. aureus, E. coli
GO-COOH-CuS-5 ⁷⁴		>90 %	E. coli, B. subtitle
$CuS@Ti_3C_2T_x^2$	500	> 95 %	S. aureus, E. coli
CuS@Corn stalk/chitin ⁷³		Active	S. aureus, E. coli
CuS-BSA ³	50 ppm	80 %	S. aureus, E. coli
CuS-BSA/Lysozyme ⁴	200	Active	B. subtitle, E. coli
CuS@PANI	30	Active	S. aureus, S. pneumonaie,
(This work)			E. coli, and P. aeruginosa

1 References

2	1	X. Liu, X. Li, Y. Shan, Y. Yin, C. Liu, Z. Lin, S.S. Kumar, CuS nanoparticles anchored to
3		g-C3N4 nanosheets for photothermal ablation of bacteria, RSC Adv., 2020, 10, 12183-
4		12191. https://doi.org/10.1039/d0ra00566e
5	2	Q. Li, W. Wang, H. Feng, L. Cao, H. Wang, D. Wang, S. Chen, NIR-triggered
6		photocatalytic and photothermal performance for sterilization based on copper sulfide
7		nanoparticles anchored on Ti ₃ C ₂ T _x MXene, J. Colloid Interface Sci., 2021, 604 , 810–822.
8		https://doi.org/10.1016/j.jcis.2021.07.048
9	3	Y. Zhao, Q. Cai, W. Qi, Y. Jia, T. Xiong, Z. Fan, S. Liu, J. Yang, N. Li and B. Chang, BSA-
10		CuS nanoparticles for photothermal therapy of diabetic wound infection in vivo, Chemistry
11		Select, 2018, 3 , 9510–9516. https://doi.org/10.1002/slct.201802069
12	4	A. Swaidan, S. Ghayyem, A. Barras, A. Addad, S. Szunerits and R. Boukherroub, nhanced
13		antibacterial activity of CuS-BSA/lysozyme under near infrared light
14		irradiation, Nanomaterials (Basel), 2021, 11, 2156. https://doi.org/10.3390/nano11092156