Supplementary Information

Efficient $Nb_2O_5@g-C_3N_4$ heterostructures for enhanced photocatalytic CO_2 reduction with highly selective conversion to CH_4

Xiaofeng Wang,^a Jingwen Jiang,^a Lilian Wang,^a Hong Guo*^{a,b}

^a International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, China

^b Southwest United Graduate School, Kunming 650092, China

*Corresponding authors E-mail addresses: <u>guohong@ynu.edu.cn</u> (H. Guo)

S1 Experimental section

Materials. Urea (NH₂CONH₂, AR, \geq 99.0%), Ammonium niobate oxalate hydrate (C₄H₄NNbO₉·XH₂O) and ethanol (C₂H₅OH, \geq 99.7%) from Shanghai Titan Technology Co., Ltd. All materials were used as received and without further purifcation. Deionized water, with a resistivity of 18.25 M Ω cm, was used throughout the experiments.

Synthesis of $g-C_3N_4$. The proper amount of urea was weighed out and filled the crucible. The crucible was placed in a set muffle furnace under 550 °C for 4h to obtain $g-C_3N_4$ presenting light yellow powder.

Synthesis of Nb₂O₅. An appropriate amount of ammonium niobium oxalate hydrate $(C_4H_4NNbO_9\cdot XH_2O)$ was calcined in the crucible at 600 °C in Muffle furnace for 6h, and then took out the grinding to obtain a good crystalline Nb₂O₅ sample.

S2 Characterization

The Powder X-ray diffraction (PXRD) patterns of the samples are obtained using a Xray diffractometer with Copper target K α radiation ($\lambda = 1.5418$ nm), scanning range (Angle 2 θ) of 10°~ 90°, scanning time of 0.5 s. The morphology of samples is investigated using scanning electron microscope (SEM) (AMRAY 1000B), the elements distribution is detected by SEM EDS mapping. And Transmission electron microscopy (TEM) images and energy dispersive spectrum (EDS) mapping were acquired on a Thermo Scientific Talos F200X and Super-X, respectively. Elements content is evaluated by X-ray photoelectron spectroscopy (XPS) recorded by K-Alpha+ (Thermo Fisher Scientific, U.S.A.) where the source of radiation was mono Al K α . The unpaired electrons in the atoms or molecules of the sample to see whether vacancy phenomena are produced by Electron Paramagnetic Resonance (EPR) (A300, Bruker Daltonics, U.S.A.). Nitrogen (N₂) sorption-desorption measurements are applied to study the surface area and porosity of V_{O,N}-NBCN at 77K via Micromeritics Tristar apparatus. The specific surface area of the sample is equivalent to the Brunauer-Emmett-Teller (BET) theoretical model, and the gas adsorption of the prepared photocatalyst is measured by BET. The Barett-Joyner-Halenda (BJH) model is used to obtain the pore volume and pore size distribution curves. UV-vis diffuse reflectance spectra (DRS) are obtained using a Shimadzu UV-2700 recording spectrophotometer. The electrochemical impedance spectroscopy (EIS) was performed by CHI 660D electrochemical workstation with a standard three-electrode cell at room temperature. The photo luminescence (PL) and time-resolved PL decay measurements are conducted on a fluorescence spectrometer (PF5301PC, Shimadzu, Japan) using a Xenon lamp (excitation at 330 nm) as a light source.

S3 EIS measurements

The photoelectrocatalytic performance test of the catalyst was carried out on the Chenhua electrochemical workstation of CHI600D. The 300W xenon lamp light source was used as the light source for photoelectric catalytic performance testing. The electrochemical performance test was carried out in an electrolytic cell of a three-electrode system. The ITO coated with photocatalyst sample was the working electrode, the Ag/AgCl (saturated KCl) electrode was used as the reference electrode, and the Pt sheet is the counter electrode. All test experiments are carried out at room temperature. The tested electrolyte is 0.5 M Na₂SO₄ solution. During the test, the applied bias voltage is 0 V, and the open circuit potential frequency range is 10^{6} Hz to 10^{-1} Hz.

S4 Measurement of photocatalytic activity

The CO₂ photoreduction on the photocatalysts in the presence of H₂O was conducted in the MCP-WS1000 Photochemical workstation (Beijing Perfectlight). The photocatalytic CO₂ reduction was carried out in a 50 mL Pyrex reactor. Ultrahighpurity CO₂ (99.99%) was fed continuously into the reactor at a rate of 0.1 L min⁻¹ for 2 h to remove oxygen in the water and saturate the solution. 15 mg of sample was uniformly dispersed in the mixture of 20 mL of sodium bicarbonate solution, 19 mg $(Ru(bpy)_2(CN)_2Ru(bpy(COO)_2)_{22})$ and 352 ascorbic acid by mg stirrer ((Ru(bpy)₂(CN)₂Ru(bpy(COO)₂)₂₂ is photosensitizer and ascorbic acid is sacrificial agent). Photocatalytic activities were investigated using a 5 W white LED light (400 $nm \le \lambda \le 800$ nm) as the visible light source. The gas product (0.5 mL, taken from the reactor) was analyzed using a GC-9790 Plus gas chromatograph equipped with a FID and a TCD detector (ZHE JIANG FULI ANALYTICAL INSTRUMENTS INC). Only the products of CO and CH₄ were detected. The selectivity of the formed CO and CH₄ is calculated according to the following equation:

$$\begin{aligned} & Selectivity \ for \ CO = \frac{2R(CO)}{8R(CH_4) + 2R(CO)} \times 100\% \\ & Selectivity \ for \ CH_4 = \frac{8R(CH_4)}{8R(CH_4) + 2R(CO)} \times 100\% \end{aligned}$$

where R(CO) and $R(CH_4)$ are the yields of reactively-formed CO and CH_4 respectively.

To demonstrate the CH₄ and CO are derived from the photocatalytic reduction of CO₂ for NB@CN (1:5), four control experiments were conducted: (1) Experiment with NB@CN (1:5), CO₂, water, (Ru(bpy)₂(CN)₂Ru(bpy(COO)₂)₂₂ and ascorbic acid, but without light irradiation; (2) Experiment with NB@CN (1:5), CO₂, (Ru(bpy)₂(CN)₂Ru(bpy(COO)₂)₂₂, ascorbic acid and light irradiation, but without water; (3) Experiment with NB@CN (1:5), water, (Ru(bpy)₂(CN)₂Ru(bpy(COO)₂)₂₂, ascorbic acid and light irradiation, but without CO₂ and the Ar is employed to replace CO₂; (4) Experiment with CO₂, water, (Ru(bpy)₂(CN)₂Ru(bpy(COO)₂)₂₂, ascorbic acid and light irradiation, but without NB@CN (1:5).

S5 In-situ DRIFTS measurement for CO₂ photoreduction

In-situ DRIFTS (diffuse reflectance infrared Fourier transform spectra) tests were conducted on Nicolet iS50 FT-IR spectrometer (Thermo Fisher, USA) equipped with a designed reaction chamber and a liquid water cool HgCdTe (MCT) detector. The sample along with a Cu holder was put into the reaction chamber. Then the sample was purged with N_2 (30 mL/min) for 1 h to blow out all the gases in the cell and adsorbed on the samples. Then, the mixture of CO₂ (5 mL/min) and H₂O vapor were introduced into the chamber for 30 min to make sure the sorption equilibrium before irradiation.

S6 Supplementary figures

Table S1. Control experiments for photocatalytic of NB@CN (1:5).

photocatalyst	Reaction medium	CH_4 yield (µmol/g)
-	No photocatalyst	0.062
NB@CN (1:5)	No light	0.108
NB@CN (1:5)	No CO ₂	0.089
NB@CN (1:5)	No H ₂ O	0.068

Table S2. Relevant products of CO_2 reduction and the corresponding reductionpotentials with reference to NHE at pH=7.

Product	Reaction	E (V vs. NHE)	
CH_4	$\mathrm{CO}_2 + 8\mathrm{H}^+ + 8\mathrm{e}^- \rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O}$	-0.24	
СО	$CO_2+2H^++2e^- \rightarrow CO+H_2O$	-0.52	

Table S3. The calculated Eg, $E_{\rm VB}$ and $E_{\rm CB}$ of g-C_3N_4 and Nb_2O_5 samples.

	E _{CB} /V	Eg/eV	E_{VB}/V
g-C ₃ N ₄	-0.37	2.91	2.54
Nb ₂ O ₅	-0.46	2.4	1.94

Photocatalyst	Light	sacrificial	Catalyst	CH ₄	СО	Ref
	sources	agent	amount			
NB@CN (1:5)	5 W white	ascorbic	15 mg	3.18	0.16	This
	LED light	acid		(µmol/g/h)	(µmol/g/h)	work
$g-C_3N_4-W_{18}O_{49}$	300W Xe	/	50 mg	1.38	0.92	1
	lamp			(µmol/g/h)	(µmol/g/h)	
Nb ₂ O ₅ Nanofibers		1	20	0.09	1.42	2
	UV Light	/	20 mg	(µmol/g/h)	(µmol/g/h)	2
g-C ₃ N ₄ @CeO ₂	300W Xe	/	50 mg	1.16	3.36	3
	lamp			(µmol/g/h)	(µmol/g/h)	
g - C_3N_4 (V_N)	300W Xe	/	100 mg	1.18	0.63	4
	lamp			(µmol/g/h)	(µmol/g/h)	
Nb ₂ O ₅ basic	UV Light	sodium			2.8	
bismuth nitrate		oxalate	10 mg	/	(µmol/g/h)	5
3%m-CeO ₂ -g-C ₃ N ₄	300W Xe			0.014	0.012	
	lamp	/	100 mg	(µmol/g/h)	(µmol/g/h)	6
CuO-Nb ₂ O ₅		ht /	300 mg	2	,	7
	UV Light			(µmol/g/h)	/	
P-CeO ₂ /g-C ₃ N ₄	300W Xe	/	50 mg	g /	0.523	0
	lamp	/			(µmol/g/h)	8

Table S4. Comparison of photocatalytic activity between NB@CN (1:5)heterojunction and reported catalysts for CO2 reduction.

References:

1 X. Zhu, H. Deng, G. Cheng, Facile construction of $g-C_3N_4$ - $W_{18}O_{49}$ heterojunction with improved charge transfer for solar-driven CO₂ photoreduction, *Inorg. Chem. Commun.*, 2021, **132**, 108814.

2 A. Prado, J. Malafatti, J. Oliveira, C. Ribeiro, M. Joya, A. Luz, E. Paris, Preparation and application of Nb₂O₅ nanofibers in CO₂ photoconversion, *Nanomaterials*, 2021, 11, 3268.

3 M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu, H. Guo, Controlled assemble of hollow heterostructured $g-C_3N_4@CeO_2$ with rich oxygen vacancies for enhanced photocatalytic CO₂ reduction, *Appl. Catal. B.*, 2019, **243**, 566-575.

4 K. Wang, J. Fu, Y. Zheng, Insights into photocatalytic CO_2 reduction on C_3N_4 : strategy of simultaneous B, K co-doping and enhancement by N vacancies, *Appl. Catal. B.*, 2019, **254**, 270-282.

5 J. Oliveira, J. Torres, R. Goncalves, C. Ribeiro, F. Nogueira, L. Ruotolo, Photocatalytic CO₂ reduction over Nb₂O₅/basic bismuth nitrate nanocomposites, *Mater. Res. Bull.*, 2021, **133**, 111073.

6 M. Li, L. Zhang, M. Wu, Y. Du, X. Fan, M. Wang, L. Zhang, Q. Kong, J. Shi, Mesostructured $CeO_2/g-C_3N_4$ nanocomposites: remarkably enhanced photocatalytic activity for CO_2 reduction by mutual component activations, *Nano Energy*, 2016, **19**, 145-155.

7 A. Nogueira, G. Silva, J. Oliveira, O. Lopes, J. Torres, M. Carmo, C. Ribeiro, CuO decoration controls Nb₂O₅ photocatalyst selectivity in CO₂ reduction, ACS Appl. *Energy Mater.*, 2020, **3**, 7629.

8 W. Li, L. Jin, F. Gao, H. Wan, Y. Pu, X. Wei, C. Chen, W. Zou, C. Zhu, L. Dong, Advantageous roles of phosphate decorated octahedral $CeO_2\{111\}/g-C_3N_4$ in boosting photocatalytic CO_2 reduction: charge transfer bridge and lewis basic site, *Appl. Catal. B.*, 2021, **294**, 120257.