The *in-situ* decoration of Ti₃C₂ quantum dots on Cu nanowires for

high efficient electrocatalytic reduction of nitric oxide to ammonia

Baojing Li^a, Dongcai Shen^a, Zhengting Xiao^{a,b}, Quan Li^a, Shuo Yao^a, and Wentai Wang^{a*}

- ^a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Email: <u>wentaiwang@ouc.edu.cn</u>
- ^b Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China

1. Determination of NH₃

The ammonia produced in the electrocatalytic NORR process was determined by UV-vis spectrophotometry with indophenol blue method. Specifically, 2 mL of solution after NORR test is added to 2 mL of 1.0 M NaOH solution (containing 5 wt% salicylic acid and 5 wt% sodium citrate), 1 mL of 0.05 M NaClO and 0.2 mL of 1 wt% $C_5FeN_6Na_2O$ are added, and the absorption spectrum of UV-vis tested after the solution was kept away from light for 2 hours in the greenhouse. The concentration of indophenol blue was measured at the wavelength of 655 nm in the absorption spectrum. The concentration absorption peak curve is calibrated with a series of standard NH₄Cl (aq) of different concentrations. The standard curve obtained by indophenol blue method is y=0.37131x+0.04886, R²=0.9996, as shown in the figure.

Fig. S1. (A) UV-vis absorption spectra of indole phenol determination at different concentrations of NH_4^+ at room temperature after 2 hours of avoiding light. (B) Calibration curve for estimating NH_4^+ concentration.

2. Determination of N₂H₄

 N_2H_4 was determined by UV-vis using the method reported by Watt and Christp. Mix 0.599 g C₉H₁₁NO, 3 mL HCl and 30 mL C₂H₅OH as color developing agent for standby. Specifically, take 2 mL of experimental solution from the NORR electrolytic cell, add 2 mL of developer, mix it at room temperature for 15 minutes, and then conduct UV-vis analysis at 455 nm to test the absorbance of the obtained solution. Configure N₂H₄ measurement working curves with different concentrations to obtain the relationship between N₂H₄ with different concentrations and absorbance: y=0.77471x+0.02014, R²=0.997.

Fig. S2. (A) UV-vis absorption spectra measured after 20 minutes at different N₂H₄ concentrations at room temperature. (B) Calibration curve for estimating N₂H₄ concentration.

3. Determination of H₂

Determination of gas phase product H₂ by gas chromatography.

Fig. S3 The CV curves of (A) Cu NWs and (B) Ti₃C₂ QDs/Cu NWs at different scanning rates (50, 60, 70, 80, 90 mV/s).

Fig. S4. The UV-vis absorption spectra of N_2H_4 were produced at Ti_3C_2 QDs/Cu NWs at different potentials.

Fig. S5. UV-vis absorption spectra at different currents.

Catalyst	Electrolyte	Potential	NH ₃ yield	FE (%)	Ref.
		(V vs.			
		RHE)			
Ti ₃ C ₂ QDs/Cu	0.1 M K ₂ SO ₄	-0.4	5346.30 μg·h ⁻¹ ·mg ⁻	95.50	This
NWs			1		work
Ni ₂ P/CP	0.1 M HC1	-0.2	33.47 µmol·h ⁻¹ ·cm ⁻	76.9	1
			2		
Ru _{0.05} Cu _{0.95}	0.5M Na ₂ SO ₄	-0.49	17.68 μmol·cm ⁻² ·h ⁻	64.9	2
			1		
CoP/TM	0.2 M	-0.2	47.22 μmol·h ⁻¹ ·cm ⁻	88.3	3
	Na ₂ SO ₄		2		
FeP/CC	0.2 M PBS	-0.2	85.62 μmol·h ⁻¹ ·cm ⁻	88.49	4
			2		
Cu/P-TiO ₂	0.1 M K ₂ SO ₄	-0.3	3520.80 µg·h ⁻¹ ·mg ⁻	86.49	5
			1		
Cu-Ti hollow	0.05M	-0.6	400 μ mol·h ⁻¹ ·cm ⁻²	90	6
fiber	Na ₂ SO ₄				
NiNC@CF	0.5 M PBS	-0.5	94 μmol·h ⁻¹ ·cm ⁻²	87	7
HCNF/CP	0.2 M	-0.6	22.35 µmol·h ⁻¹ ·cm ⁻	88.33	8
	Na ₂ SO ₄		2		
Ni@NC	0.1 M HCl	0.16	34.6 μ mol·cm ⁻² ·h ⁻¹	72.3	9

Table 1. Comparison of Ti_3C_2 QDs/Cu NWs and reported NORR performance

NiO/TM	0.1 M	-0.6	2130 µg·h ⁻¹ ·cm ⁻²	90	10
	Na ₂ SO ₄ +0.05				
	mM Fe ²⁺ -				
	EDTA				
MoS ₂ /GF	0.1 M HCl +	-0.7/0.1	99.6 μmol·cm ⁻² ·h ⁻¹	76.6	11
	0.5 mM Fe				
	(II)SB				
a-B _{2.6} C @	0.1 M	-0.9	3678.6 µg·h ⁻¹ ·cm ⁻²	87.6	12
TiO _{2/} Ti	$Na_2SO_4 + 0.5$				
	mM Fe ²⁺ -				
	EDTA				
Bi NDs/CP	0.1 M	-0.50	1194 μg·h ⁻¹ ·mg ⁻¹	89.2	13
	Na ₂ SO ₄ +				
	0.05 mM				
	Fe(II)EDT A				
Bi@C	0.1 M	-0.7/-0.4	1592.5 μg·h ⁻¹ ·mg ⁻¹	93	14
	$Na_2SO_4 +$				
	0.05 mM				
	Fe(II)EDTA				
Ru-LCN	0.5 M	-0.2	45.02µmol·mg ⁻¹ ·h ⁻¹	65.96	15
	Na ₂ SO ₄				
Fe/C	0.5 M PBS		908µmol·cm ⁻² ·h ⁻¹	77	16

	0.5M H ₂ SO ₄		1239µmol·cm ⁻² ·h ⁻¹	50.4	
MoC/NCS	0.1 M HCl	-0.8	1350±15µg·cm ⁻² ·h ⁻	89%±2	17
			1	%	

References

- T. Mou, J. Liang, Z. Ma, L. Zhang, Y. Lin, T. Li, Q. Liu, Y. Luo, Y. Liu, S. Gao, H. Zhao, A. M. Asiri, D. Ma and X. Sun, High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions, *Journal of Materials Chemistry* A, 2021, 9, 24268-24275.
- J. Shi, C. Wang, R. Yang, F. Chen, N. Meng, Y. Yu and B. Zhang, Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping, *Science China Chemistry*, 2021, 64, 1493-1497.
- J. Liang, W.-F. Hu, B. Song, T. Mou, L. Zhang, Y. Luo, Q. Liu, A. A. Alshehri, M. S. Hamdy, L.-M. Yang and X. Sun, Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray, *Inorganic Chemistry Frontiers*, 2022, 9, 1366-1372.
- J. Liang, Q. Zhou, T. Mou, H. Chen, L. Yue, Y. Luo, Q. Liu, M. S. Hamdy, A. A. Alshehri, F. Gong and X. Sun, FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions, *Nano Research*, 2022, 15, 4008-4013.
- L. Chen, W. Sun, Z. Xu, M. Hao, B. Li, X. Liu, J. Ma, L. Wang, C. Li and W. Wang, Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3, *Ceramics International*, 2022, 48, 21151-21161.
- P. M. Krzywda, A. Paradelo Rodríguez, N. E. Benes, B. T. Mei and G. Mul, Effect of Electrolyte and Electrode Configuration on Cu-Catalyzed Nitric Oxide Reduction to Ammonia, *ChemElectroChem*, 2022, 9, e202101273.
- 7. T. Muthusamy, S. Sethuram Markandaraj and S. Shanmugam, Nickel nanoparticles wrapped in N-doped carbon nanostructures for efficient electrochemical reduction of NO to NH3, *Journal of Materials Chemistry A*, 2022, **10**, 6470-6474.
- L. Ouyang, Q. Zhou, J. Liang, L. Zhang, L. Yue, Z. Li, J. Li, Y. Luo, Q. Liu, N. Li, B. Tang, A. Ali Alshehri, F. Gong and X. Sun, High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions, *J Colloid Interface Sci*, 2022, 616, 261-267.
- S. Sethuram Markandaraj, T. Muthusamy and S. Shanmugam, Electrochemical Reduction of Nitric Oxide with 1.7% Solar-to-Ammonia Efficiency Over Nanostructured Core-Shell Catalyst at Low Overpotentials, *Advanced Science*, 2022, 9.
- P. Liu, J. Liang, J. Wang, L. Zhang, J. Li, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, Q. Liu, A. M. Asiri, Q. Kong and X. Sun, High-performance NH3 production via NO electroreduction over a NiO nanosheet array, *Chem Commun*, 2021, 57, 13562-13565.

- L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin, L. Yue, T. Li, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, X. Guo, D. Ma and X. Sun, High-Performance Electrochemical NO Reduction into NH3 by MoS2 Nanosheet, *Angew Chem Int Ed Engl*, 2021, 60, 25263-25268.
- J. Liang, P. Liu, Q. Li, T. Li, L. Yue, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, I. Shakir, P. O. Agboola, C. Sun and X. Sun, Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High-Efficiency Electrocatalytic NO Reduction to NH3, *Angew Chem Int Ed Engl*, 2022, 61, e202202087.
- Y. Lin, J. Liang, H. Li, L. Zhang, T. Mou, T. Li, L. Yue, Y. Ji, Q. Liu, Y. Luo, N. Li, B. Tang, Q. Wu, M. S. Hamdy, D. Ma and X. Sun, Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions, *Materials Today Physics*, 2022, 22, 100611.
- Q. Liu, Y. Lin, L. Yue, J. Liang, L. Zhang, T. Li, Y. Luo, M. Liu, J. You, A. A. Alshehri,
 Q. Kong and X. Sun, Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3, *Nano Research*, 2022, 15, 5032-5037.
- Y. Li, C. Cheng, S. Han, Y. Huang, X. Du, B. Zhang and Y. Yu, Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets, ACS Energy Letters, 2022, 7, 1187-1194.
- S. Cheon, W. J. Kim, D. Y. Kim, Y. Kwon and J.-I. Han, Electro-synthesis of Ammonia from Dilute Nitric Oxide on a Gas Diffusion Electrode, *ACS Energy Letters*, 2022, 7, 958-965.
- G. Meng, M. Jin, T. Wei, Q. Liu, S. Zhang, X. Peng, J. Luo and X. Liu, MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia, *Nano Research*, 2022, 15, 8890-8896.