Self-Promoted Ammonia Selectivity for the Electro-Reduction of Nitrogen on gt-C₃N₄ Supported Single Metal Catalysts: The Machine Learning Model and Physical Insights

Lifu Zhang^{a,b,†}, Lanlan Chen^{b,†}, Wanghui Zhao^{b,†}, Zhenpeng Hu^{*a,}, Jing Chen^{a,c}, Wenhua Zhang^{*b}, and Jinlong Yang^b

^a School of Physics, Nankai University, Tianjin 300071, China

^b Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^c Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

 $\label{eq:constraint} \mbox{Table S1. The reaction energy } (\Delta E/eV) \mbox{ of the adsorption of H, } N_2 \mbox{ and the protonation of nitrogen on } Mo/Re \mbox{ embedded } MoS_2.$

System	ΔE/eV										
	*H	* <u>N</u> N	* <u>N</u> NH	* <u>N</u> N*H	*1N ₂ -	*1N ₂ -	*1N ₂ -	*2N ₂ -	*2N ₂ -	*2N ₂ -	
					<u>N</u> N	<u>N</u> NH	<u>N</u> N*H	<u>N</u> N	<u>N</u> NH	<u>N</u> N*H	
Mo/ MoS ₂	-0.36	-1.09	0.25	-0.30	-1.20	0.33	-0.18	-1.25	1.02	1.09	
Re/MoS_2	-0.68	-1.55	0.15	-0.60	-1.33	0.40	-0.68	-0.67	1.25	1.65	

Table S2. The reaction free energy ($\Delta G/eV$) of the adsorption of H, N₂ and the protonation of nitrogen on different element embedded *gt*-C₃N₄.

Element	∆G/eV											
	*H	* <u>N</u> N	* <u>NN</u>	* <u>N</u> NH	* <u>NN</u> H	* <u>N</u> N*H	*1N ₂ -	*1N ₂ -	*1N ₂ -	*2N ₂ -	*2N ₂ -	*2N ₂ -
							<u>N</u> N	<u>N</u> NH	<u>N</u> N*H	<u>N</u> N	<u>N</u> NH	<u>N</u> N*H
Sc	-0.80	-0.48	-0.53				-0.19			-0.04		
Ti	-0.63	-0.73	-0.75	0.93	0.53	0.01	-0.51	1.15	0.63	-0.29	1.04	0.93
V	-0.69	-0.88	-0.78	0.93	0.62	0.06	-0.50	1.13	0.35	-0.35	0.83	1.05
Cr	-0.32	-0.92	-0.40	1.04	0.63	0.19	-0.12	0.98	0.14	-0.70	1.26	1.79
Mn	-0.53	-0.52	-0.24	1.05	0.95	0.32	-0.17	1.13	0.08	-0.32	1.75	2.52
Fe	-0.39	-0.89	-0.54	1.18	1.12	0.23	0.01			0.54		
Co	-0.35	-0.77	-0.35	1.25	1.24	0.20	0.37			0.48		
Ni	0.00	-0.82	-0.29	1.55	1.50	0.65	0.04			0.76		
Cu	-0.27	-0.52	0.00	1.92	1.87	0.75	*					
Zn	-0.35	0.41	0.45									
Y	-0.61	-0.20	-0.32				-0.21			-0.04		
Zr	-0.82	-0.77	-0.87	0.69	0.32	-0.37	-0.60	0.98	0.21	-0.37	0.88	0.44
Nb	-0.67	-0.85	-0.85	0.68	0.28	-0.12	-0.72	0.74	0.34	-0.53	0.57	0.41
Mo	-0.61	-1.18	-1.08	0.82	0.85	-0.04	-1.01	1.08	0.48	-0.71	1.04	1.15
Tc	-0.71	-1.23	-0.69	0.97	0.67	-0.39	-1.01	1.24	0.02	-0.58	1.84	2.23
Ru	-0.79	-1.01	-0.39	0.97	0.63	-0.65	-0.84	1.21	-0.43	0.43		
Rh	-0.52	-1.00	-0.35	0.90	0.51	-0.52	-0.49					
Pd	-0.32	-1.00	-0.66	1.90	1.76	0.80	0.36					
Ag	-0.23	0.35	0.35 [‡]									
Cd	0.62	0.40	0.45									
Ta	-1.17	-1.08	-1.30	0.56	0.07	-0.59	-0.94	0.63	0.00	-0.76	0.49	0.29
W	-1.19	-1.29	-1.56	0.45	0.61	-0.64	-1.32	0.81	0.07	-1.01	0.87	0.92
Re	-1.26	-1.42	-1.15	0.58	0.43	-0.84	-1.33	0.91	-0.44	-0.98	1.58	2.14

*NN*H represents the geometry where one nitrogen is adsorbed on the metal, when H is also adsorbed on the metal. * represent the structure does not exist.

Table S3. PDS and U_L for *gt*-C₃N₄ supported different element-N₂ complex to catalyse N₂-fixation.

Element	*2N ₂ - <u>N</u> N	
	PDS	U_L
V	$*2N_2-\underline{N}N + (H^++e^-) \rightarrow *2N_2-\underline{N}NH$	-0.83
Cr	$*2N_2-\underline{N}N + (H^++e^-) \rightarrow *2N_2-\underline{N}NH$	-1.26
Mo	$*2N_2-\underline{N}N + (H^++e^-) \rightarrow *2N_2-\underline{N}NH$	-1.04
W	$*2N_2-\underline{N}N + (H^++e^-) \rightarrow *2N_2-\underline{N}NH$	-0.87

Table S4. Net effective charges calculated from Bader Charge analysis of the systems on the $H@Sc/gt-C_3N_4$, $1N_2$ - $H@Rh/gt-C_3N_4$, $2N_2$ - $H@Ru/gt-C_3N_4$, $3N_2$ - $H@Zr/gt-C_3N_4$, $3N_2$ - $H@Zr/gt-C_3N_4$, $3N_2$ - $H@Zr/gt-C_3N_4$, $3N_2$ - $H@V/gt-C_3N_4$, $3N_2$ - N_2 - N_2 , N_2 - N_2 , N_2 , N_2 - N_2 , N_2 , N_2 , N_2 - N_2 , N_2

		Bader	valence		Bader valence					
	H@Sc/gt- C ₃ N ₄	1N ₂ - H@Rh/gt- C ₃ N ₄	2N ₂ - H@Ru/gt- C ₃ N ₄	3N ₂ - H@Zr/gt- C ₃ N ₄	H@V/gt- C ₃ N ₄	1N ₂ - H@V/gt- C ₃ N ₄	2N ₂ - H@V/gt- C ₃ N ₄	3N ₂ - H@V/gt- C ₃ N ₄		
metal	Sc : +1.87	Rh : +0.50	Ru : +1.04	Zr : +2.01	V : +1.36	V : +1.42	V : +1.42	V : +1.45		
H on metal	-0.65	-0.16	-0.18	-0.41	-0.52	-0.47	-0.41	-0.20		
adsorbed N ₂		-0.34/+0.12	-0.29/+0.09 -0.24/+0.04	-0.38/+0.14 -0.38/+0.07 -0.36/+0.11		-0.26/-0.01	-0.25/+0.01 -0.39/+0.15	-0.26/+0.03 -0.31/+0.05 -0.26/+0.03		

Table S5. Net effective charges calculated from Bader Charge analysis of TM/gt-C₃N₄.

	Bader valence of metal										
	Sc/gt-	Ti/gt-	V/gt-	Cr/gt-	Mn/gt-	Fe/gt-	Co/gt-	Ni/gt-	Cu/gt-	Zn/gt-	
	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	
substrate	+1.45	+1.18	+1.03	+0.95	+0.79	+0.90	+0.75	+0.63	+0.65	+0.11	
* <u>N</u> N		+1.42	+1.38	+1.15	+1.15	+1.03	+0.86	+0.67	+0.83		
*1N ₂ - <u>N</u> N		+1.48	+1.41	+1.26	+1.11						
*2N ₂ - <u>N</u> N		+1.51	+1.45	+1.28	+1.21						
]	Bader valer	nce of meta	ıl				
	Y/gt-	Zr/gt-	Nb/gt-	Mo/gt-	Tc/gt-	Ru/gt-	Rh/gt-	Pd/gt-	Ag/gt-	Cd/gt-	
	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	C_3N_4	
substrate	+1.44	+1.65	+1.35	+1.02	+0.84	+0.67	+0.52	+0.17	+0.20	+0.11	
* <u>N</u> N		+1.77	+1.63	+1.22	+1.07	+0.81	+0.47	+0.29			
*1N ₂ - <u>N</u> N		+1.85	+1.72	+1.35	+1.19	+0.97					
*2N ₂ - <u>N</u> N		+1.92	+1.87	+1.41	+1.28						
]	Bader valer	ice of meta	ıl				
			Ta/gt-	W/gt-	Re/gt-						
			C_3N_4	C_3N_4	C_3N_4						
substrate			+1.32	+0.97	+0.80						
* <u>N</u> N			+1.61	+1.41	+1.15						
*1N ₂ - <u>N</u> N			+1.78	+1.56	+1.38						
*2N ₂ - <u>N</u> N			+1.84	+1.64	+1.50						

Table S6. Net effective charges calculated from Bader Charge analysis of the systems on the $1N_2@V/gt-C_3N_4$, $2N_2@V/gt-C_3N_4$ and $3N_2@V/gt-C_3N_4$.

		Bader valence										
	$1N_2@V/gt-C_3N_4$	$2N_2@V/gt-C_3N_4$	$3N_2@V/gt-C_3N_4$									
adsorbed N ₂	-0.40/+0.01	-0.40/+0.08 - 0.37/+0.05	-0.29/+0.02 - 0.30/+0.02 -0.38/+0.10									

21 Sc -0.80	22 Ti 1.04 0.93 -0.11	23 V 0.83 1.05 0.22	24 Cr 1.26 1.79 0.53	25 Mn 1.75 2.52 0.77	26 Fe 1.18 0.23 -0.95	27 Co 1.25 0.20 -1.05	28 Ni 1.55 0.65 -0.90	29 Cu 1.92 0.75 -1.17	³⁰ Zn -0.35
39 Y -0.61	40 Zr 0.88 0.44 -0.44	41 Nb 0.57 0.41 -0.16	42 Mo 1.04 1.15 0.10	43 TC 1.84 2.23 0.39	44 Ru 1.21 -0.43 -1.64	45 Rh 0.90 -0.52 ↑ -1.42 ↑	46 PC 1.90 0.80 -1.10	47 Ag -0.23	48 Cd 0.62
		73 Ta 0.49 0.29 -0.20	74 W 0.87 0.92 0.05	75 Re 1.58 2.14 0.55	Δ	G _{*NNH} ΔG	гм-н		

Figure S1. Numbers of nitrogen molecules effectively binding on $TM/gt-C_3N_4$ (orange, green, blue and yellow region represent 0, 1, 2, 3), the reaction Gibbs free energy (eV) of the formation of *NNH(ΔG_{*NNH}), the adsorption free energy of H on the metal for $TM/gt-C_3N_4$ (ΔG_{TM-H}), and the potential difference (U) between the formation of *NNH and TM-H ($\Delta U = U_{*NNH} - U_{TM-H} = -\Delta G_{*NNH}/e - [-\Delta G_{TM-H}/e]$).

Figure S2. Flowchart of the screening procedure of eNRR on TM/gt-C₃N₄.

Figure S3. Structural snapshots of the (a) $3N_2@V/gt-C_3N_4$, (b) $3N_2@Cr/gt-C_3N_4$, (c) $3N_2@Mo/gt-C_3N_4$, and (d) $3N_2@W/gt-C_3N_4$ for AIMD simulation at 300 K after 5.0 ps.

Figure S4. Temperature vs time for (a) $3N_2@V/gt$ -C₃N₄, (b) $3N_2@Cr/gt$ -C₃N₄, (c) $3N_2@Mo/gt$ -C₃N₄, and (d) $3N_2@W/gt$ -C₃N₄ during the MD simulation after 5.0 ps.

Figure S5. The energy of the second protonation of nitrogen for $3N_2$ adsorbed on TM/gt- C_3N_4 (TM = V, Cr, Nb, Mo, Ta, and W).

Figure S6. Free energy diagram at U = 0 V (vs SHE) for the reaction intermediates by adsorbing three N₂ on the V/gt-C₃N₄. The dashed lines indicated the possible reaction pathways.

Figure S7. Free energy diagram at U = 0 V (vs SHE) for the reaction intermediates by adsorbing three N₂ on the Cr/gt-C₃N₄. The dashed lines indicated the possible reaction pathways.

Figure S8. Free energy diagram at U = 0 V (vs SHE) for the reaction intermediates by adsorbing three N₂ on the Mo/gt-C₃N₄. The dashed lines indicated the possible reaction pathways.

Figure S9. Free energy diagram at U = 0 V (vs SHE) for the reaction intermediates by adsorbing three N₂ on the W/gt-C₃N₄. The dashed lines indicated the possible reaction pathways.

Figure S10. Molecular dynamics simulation at T = 300 K with 5 ps.