Electronic Supplementary Information

Subtle structural engineering of coordination polymer host for the

fluorescence modulation of host-guest donor-acceptor systems

Hong-Xiang Nie, ^a Bo Zhang, ^a Yi-Ming Liu, ^a Mei-Hui Yu^a and Ze Chang*^a

^a School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and

Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

Contacts: Ze Chang: changze@nankai.edu.cn,

Contents

Fig. S1 The binding energy spectrum of F for 1.

Fig. S2 Coordination environment in complex 1.

Fig. S3 The experimental and simulated PXRD patterns of complex 1.

Fig. S4 The experimental and simulated PXRD patterns of complex 2.

Fig. S5 The PXRD patterns of 1 and PAHs@1.

Figure S6 The PXRD patterns of 2 and PAHs@2.

Fig. S7 Infrared spectroscopy of 1, 2, PAHs@1 and PAHs@2.

Fig. S8. The thermogravimetric curve of 1, and PAHs@1 at air atmosphere.

Fig. S9 The thermogravimetric curve of 2, and PAHs@2 at air atmosphere.

Figure S10-S14. The ¹H NMR spectra of digested 1 and PAHs@1 crystal samples and the corresponding ligands and guest.

Fig. S15-S19 The ¹H NMR spectra of digested 2 and PAHs@2 crystal samples and the corresponding ligands and guest.

Fig. S20. UV-vis spectra of the complexes 1 and PAHs@1.

Fig. S21 UV-vis spectra of the complexes 2 and PAHs@2.

Figure S22 Linear correlation between the emission maxima of PAHs@1, PAHs@2 and the ionization potential (IP) of corresponding guests.

Fig. S23 Emission decay traces and fits results of the fluorescent lifetime (τ) for complexes PAHs@1 and PAHs@2.

Table S1. Crystal data and structure refinement parameters for the partial complexes.

Table S2. Guest loading in PAHs@1 and PAHs@2.

 Table S3. Summary of Crystallographic parameter data for complexes.

References

Fig. S1 The binding energy spectrum of F for 1.

Fig. S2 Coordination environment of Cd (II) ions and ligand in complex 1.

Fig. S3 The experimental and simulated PXRD patterns of sample 1.

Fig. S4 The experimental and simulated PXRD patterns of sample 2.

Fig. S5 The PXRD patterns of 1 and PAHs@1.

Fig. S6 The PXRD patterns of 2 and PAHs@2.

Fig. S7 Infrared spectroscopy of 1, 2, PAHs@1 and PAHs@2.

Compound	1	2
Formula	$C_{42}H_{24}Cd_{3}FN_{6}O_{12}$	$C_{42}H_{24}Zn_{3}FN_{6}O_{12}$
Formula weight	1160.92	1019.78
T (K)	175.57	286.9
Radiation (Å)	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)
Crystal system	Hexagonal	Hexagonal
space group	P6 ₃ /mmc	P6 ₃ /mmc
CCDC number	2099209	2283604
<i>a</i> (Å)	17.4307	16.9122
<i>b</i> (Å)	17.4307	16.9122
c (Å)	15.9206	14.6638
a (deg)	90	90
β (deg)	90	90
γ (deg)	120	120
$V(Å^3)$	4189.09	3632.26
Z	2	2
D (g/cm ⁻³)	0.920	0.932
μ/mm^{-1}	6.373	1.533
F (000)	1134.0	1026
GOF on F ²	1.114	1.109
$R_{I}, wR_{2} [I > 2\sigma(I)]$	$R_1 = 0.0489, wR_2 = 0.1454$	$R_1 = 0.0533, wR_2 = 0.1320$
R_1 , wR_2 [all data]	$R_1 = 0.0497, wR_2 = 0.1461$	$R_1 = 0.0551, wR_2 = 0.1331$

Table S1 Crystal data and structure refinement parameters for the partial LCPs.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR2 = \{\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}] \}^{1}$

Compound	perylene@1	perylene@2	
Formula	C ₆₂ H ₃₆ Cd ₃ FN ₆ O ₁₂	C ₆₂ H ₃₆ Zn ₃ FN ₆ O ₁₂	
Formula weight	1413.22	1272.08	
Т (К)	100.00	100.01	
Radiation (Å)	$Cu K\alpha (\lambda = 1.54184)$	Cu K α (λ = 1.54184)	
Crystal system	Hexagonal	Hexagonal	
space group	P6 ₃ /mmc	P6 ₃ /mmc	
CCDC number	2099211	2099081	
<i>a</i> (Å)	17.39990	16.91970	
<i>b</i> (Å)	17.39990	16.91970	
<i>c</i> (Å)	15.63180	14.57180	
a (deg)	90	90	
β (deg)	90	90	
γ (deg)	120	120	
V (Å ³)	4098.58	3612.68	
Z	2	2	
D (g/m ³)	1.145	1.169	
μ/mm^{-1}	6.601	1.642	
F (000)	1398.0	1290	
GOF on F ²	1.115	1.107	
$R_1, wR_2 [I > 2\sigma(I)]$	$R_1 = 0.0670, wR_2 = 0.2192$	$R_1 = 0.0897, wR_2 = 0.2608$	
R_1, wR_2 [all data]	$R_1 = 0.0680, wR_2 = 0.2203$	$R_1 = 0.0903, wR_2 = 0.2613$	
${}^{a}R = \Sigma F_{o} - F_{c} / \Sigma F_{o} . {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}.$			

Compound	triphenylene@1		
Formula	$C_{60}H_{36}Cd_3FN_6O_{12}$		
Formula weight	1389.2		
Т (К)	107		
Radiation (Å)	Cu K α (λ = 1.54184)		
Crystal system	Hexagonal		
space group	P6 ₃ /mmc		
CCDC number	2099210		
<i>a</i> (Å)	17.38640		
<i>b</i> (Å)	17.38640		
<i>c</i> (Å)	15.72710		
α (deg)	90		
β (0)	90		
γ (0)	120		
V (Å ³)	4117.17		
Z	2		
D (g/m ³)	1.121		
μ/mm^{-1}	6.563		
F (000)	1374.0		
GOF on F ²	1.174		
$R_{l}, wR_{2} [I > 2\sigma(I)]$	$R_1 = 0.0576, wR_2 = 0.1807$		
R_1, wR_2 [all data]	$R_1 = 0.0576, wR_2 = 0.1807$		
${}^{a}R = \Sigma F_{o} - F_{c} / \Sigma F_{o} \cdot {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}.$			

Fig. S8 The thermogravimetric curve of 1 and PAHs@1 at air atmosphere.

Fig. S9 The thermogravimetric curve of 2 and PAHs@2 at air atmosphere.

Fig. S10 The ¹H NMR spectra of digested 1 crystal samples and the corresponding ligands and guest.

Fig. S11 The ¹H NMR spectra of digested pyrene@1 crystal samples and the corresponding ligands and guest.

pyrene@1	Feeding amount of pyrene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of pyrene
	0.025 mmol	1:0.044	7.58:1	13.2%

Fig. S12 The ¹H NMR spectra of digested triphenylene@1 crystal samples and the corresponding ligands and guest.

triphenylene@1	Feeding amount of triphenylene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of triphenylene
	0.025 mmol	1:0.308	1.62:1	61.7%

Fig. S13 The ¹H NMR spectra of digested perylene@1 crystal samples and the corresponding ligands and guest.

perylene@1	Feeding amount of perylene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of perylene
	0.025 mmol	1:0.286	1.17:1	85.4%

Figure. S14 The ¹H NMR spectra of digested coronene@1 crystal samples and the corresponding ligands and guest.

coronene@1	Feeding amount of coronene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of coronene
	0.025 mmol	1:0.757	1.32:1	75.8%

Fig. S15 The ¹H NMR spectra of digested 2 crystal samples and the corresponding ligands and guest.

Fig. S16 The ¹H NMR spectra of digested pyrene@2 crystal samples and the corresponding ligands and guest.

pyrene@2	Feeding amount of pyrene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of pyrene
	0.025 mmol	1:0.233	1.43:1	69.9%

Fig. S17 The ¹H NMR spectra of digested triphenylene@2 crystal samples and the corresponding ligands and guest.

triphenylene@2	Feeding amount of triphenylene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of triphenylene
	0.025 mmol	1:0.306	1.63:1	61.3%

Fig. S18 The ¹H NMR spectra of digested perylene@2 crystal samples and the corresponding ligands and guest.

perylene@2	Feeding amount of perylene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of perylene
	0.025 mmol	1:0.213	1.56:1	63.9%

Fig. S19 The ¹H NMR spectra of digested coronene@2 crystal samples and the corresponding ligands and guest.

coronene@2	Feeding amount of coronene	Experimental ¹ H integral area ratio for TPT to guest	Experimental TPT to guest molecular ratio	Loading ratio of coronene
0.025 mmol	1:0.757	1.32:1	75.7%	

PAHs compound Guest loading (%)	pyrene	triphenylene	perylene	coronene
PAHs@1	13.2	61.7	85.4	75.8
PAHs@2	69.9	61.3	63.9	75.7

Table S2. Guest loading in PAHs@1 and PAHs@2.

Fig. S20 UV-vis spectra of the complexes 1 and PAHs@1.

Fig. S21 UV-vis spectra of the complexes 2 and PAHs@2.

Fig. S22 Linear correlation between the wavenumber of **PAHs@1** (a) and **PAHs@2** (b) and the ionization potential (IP) of corresponding guests. (Ionization potential data obtained from ref

Complex	τ (ns)	average τ (ns)	χ^2
anthracene@1	$\tau_1 = 1.40 \ \tau_2 = 6.06 \ \tau_3 = 16.04$	τ=9.04	1.3239
phenanthrene@1	$\tau_1 = 1.41 \ \tau_2 = 10.37 \ \tau_3 = 26.26$	τ=19.85	0.9562
pyrene@1	$\tau_1 = 0.21 \ \tau_2 = 3.84 \ \tau_3 = 14.09$	τ=10.39	0.9747
triphenylene@1	$\tau_1 = 17.90 \ \tau_2 = 2980.50$	τ=2326.95	1.0552
perylene@1	$\tau_1 = 0.24 \ \tau_2 = 1.75 \ \tau_3 = 50.00$	τ=2.16	1.1464
coronene@1	$\tau_1 = 1.32 \ \tau_2 = 8.51 \ \tau_3 = 17.40$	τ=14.24	0.9858
anthrene@2	$\tau_1 = 0.26 \ \tau_2 = 2.50 \ \tau_3 = 8.32$	τ=3.18	1.0455
phenanthrene@2	$\tau_1 = 0.40 \ \tau_2 = 5.13 \ \tau_3 = 22.20$	τ=20.34	1.0218
pyrene@2	$\tau_1 = 1.08 \ \tau_2 = 5.96 \ \tau_3 = 15.55$	τ=14.24	1.0118
triphenylene@2	τ_1 =16.55 τ_2 =71.01 τ_3 =5186.66	τ=3010.52	0.9949
perylene@2	$\tau_1 = 0.42 \ \tau_2 = 2.00$	τ=0.7	1.0820
coronene@2	$\tau_1 = 2.91 \ \tau_2 = 22.14$	τ=21.37	0.9668

Fig. S23 Emission decay traces and fits results of the fluorescent lifetime (τ) for complexes PAHs@1 and PAHs@2 at room temperature.

code	a/Å	b/Å	c/Å	$\alpha/^{\circ}$	β/°	γ/°
1	17.4307	17.4307	15.9206	90	90	120
anthracene@1	17.389	17.389	15.736	90	90	120
phenanthrene@1	17.3916	17.3916	15.7466	90	90	120
pyrene@1	17.3925	17.3925	15.6977	90	90	90
triphenylene@1	17.3864	17.3864	15.7271	90	90	120
perylene@1	17.399	17.399	15.631	90	90	120
2	16.9122	16.9122	14.6638	90	90	120
anthracene@2	16.9003	16.9003	14.4398	90	90	120
phenanthrene@2	16.9225	16.9225	14.4953	90	90	120
pyrene@2	16.90	16.90	14.394	90	90	120
triphenylene@2	16.8914	16.8914	14.5020	90	90	120
perylene@2	16.9197	16.9197	14.5718	90	90	120
coronene@2	16.919	16.919	14.162	90	90	120

Table S3. Summary of crystallographic parameter data for LCPs.

References

1. D.-S. Zhang, Q. Gao, Z. Chang, X. T. Liu, B. Zhao, Z. H. Xuan, T. L. Hu, Y. H. Zhang, J. Zhu and X. H. Bu, Rational Construction of Highly Tunable Donor-Acceptor Materials Based on a Crystalline Host-Guest Platform, *Adv Mater*, 2018, **30**, 1804715.

2. J. B. Birks and M. A. Slifkin, π -Electronic Excitation and Ionization Energies of Condensed Ring Aromatic Hydrocarbons, *Nature*, 1961, **191**, 761-764.

3. F. Brogli and E. Heilbronner, The Photoelectron Spectra of Benzenoid Hydrocarbons C₁₈H₁₂, *Angew. Chem. Int. Ed.*, 1972, **11**, 538-539.

4. E. Clar, J. M. Robertson, R. Schloegl and W. Schmidt, Photoelectron Spectra of Polynuclear Aromatics. 6. Applications to Structural Elucidation: "Circumanthracene", *J. Am. Chem. Soc.*, 1981, **103**, 1320-1328.