Supporting Information

Low-coordination single Ni atoms on graphitic C₃N₄ for nitrite

electroreduction to ammonia

Hongyan Zhao #, Jiaqi Xiang #, Guike Zhang, Kai Chen, Ke Chu *

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

[#] These authors contributed equally to this work.

*Corresponding author. chuk630@mail.lzjtu.cn (K. Chu)

Experimental Section

Synthesis of Ni₁/C₃N₄

 Ni_1/C_3N_4 was synthesized by a thermal polymerization method. First, a mixture of 7 g of urea and 3 g of melamine was heated at 550 °C for 4 h to prepare the bulk g- C_3N_4 , which was grinded to powder and subjected to 6 h of liquid exfoliation in anhydrous ethanol/deionized water (9:1 v/v) to obtain g- C_3N_4 nanosheets. Afterwards, 0.02 g of g- C_3N_4 was added to 30 mL of deionized water under sonication for 1 h, followed by adding 0.05 mL of 0.1 M NiCl₂ under stirring for 10 min. The mixed solution was standing for 1 h and then freeze-dried for 24 h to obtain Ni₁/C₃N₄.

Characterizations

X-ray diffraction (XRD) pattern was collected on a Rigaku D/max 2400 diffractometer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were carried out on a Tecnai G² F20 microscope. Spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) was performed on a Titan Themes Cubed G2 300 microscope.

Electrochemical experiments

Electrochemical measurements were carried out on a CHI-760E electrochemical workstation using a conventional three-electrode cell. The catalyst loaded on carbon cloth (CC, 0.5 mg/ cm²) was used as the working electrode. Ag/AgCl and Pt foil were used as reference electrode and counter electrode, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V)= $E_{Ag/Ag/Cl} + 0.198 + 0.059 \times pH$. The NO₂RR measurements were carried out in 0.5 M Na₂SO₄ containing 0.1 M NaNO₂ using an H-type cell separated by a Nafion 211 membrane. After each chronoamperometry test for 1 h, the produced NH₃ and other possible by-products were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products (H₂, N₂) were analyzed by gas chromatography (Shimadzu GC2010).

Determination of NH₃

NH₃ was quantitatively determined by the indophenol blue method¹. Briefly, 2

mL NaOH solution (1 M) containing salicylic acid (5 wt%) and sodium citrate (5 wt%), 1 mL NaClO solution (0.05 M) and 0.2 mL Na[Fe(NO)(CN)₅] (1wt%) were respectively added into the 2 ml diluted electrolyte. After standing for 2 h, the UV-Vis absorption spectra was measured and the concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations, and NH₃ yield rate and NH₃-Faradaic efficiency (FE_{NH3}) were calculated by the following equation:

NH₃ yield is calculated by

NH₃ yield (
$$\mu$$
g h⁻¹ cm⁻²) = $\frac{c_{\rm NH_3} \times V}{t \times A}$ (1)

FE_{NH3} is calculated by

$$FE_{NH3} (\%) = \frac{6 \times F \times c_{NH_3} \times V}{M \times Q} \times 100\%$$
⁽²⁾

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and A (cm⁻²) is the area loading of the catalyst on CC, F (96500 C mol⁻¹) is the Faraday constant, M is the relative molecular mass of NH₃, Q (C) is the quantity of applied electricity.

Determination of N₂H₄

The concentration of N_2H_4 was determined by Watt and Chrisp method². Typically, 5 mL of electrolyte was removed from the electrochemical reaction vessel. The 330 mL of color reagent containing 300 mL of ethyl alcohol, 5.99 g of $C_9H_{11}NO$ and 30 mL of HCl were prepared, and 5 mL of color reagent was added into the electrolyte. After stirring for 10 min, the UV-vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a series of concentrations.

Calculation details

Spin-polarized DFT calculations were carried out using a Cambridge sequential total energy package (CASTEP). The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) functional was used to model the exchange-correlation interactions. The DFT-D correction method was used to describe the van der Waals

interactions throughout the calculations. The electron wave functions were expanded using plane waves with a cutoff energy of 450 eV. The convergence tolerance was set to be 1.0×10^{-5} eV for energy and 0.03 eV Å⁻¹ for force. The Brillouin zone was sampled by $3 \times 3 \times 1$ Monkhorst–Pack k-point mesh. The C₃N₄ was modeled by a 2×2 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs. The adsorption energy (ΔE) is calculated as³

$$\Delta E = E_{\rm ads/slab} - E_{\rm ads} - E_{\rm slab} \tag{3}$$

where $E_{ads/slab}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab, adsorbed species and isolated slab, respectively.

The computational hydrogen electrode (CHE) model was adopted to calculate the Gibbs free energy change (ΔG) for each elementary step as follows³

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{4}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.

Molecular dynamics (MD) simulations were carried out using a force field type of Universal. The electrolyte system was geometrically optimized by setting the convergence tolerance of 2.0×10^{-5} kcal/mol for energy and 0.001 kcal/mol/Å for force. The non-bond interaction was processed by Ewald with accuracy of 10^{-5} Kcal/mol and the repulsive cutoff was chosen as 12 Å. The electrolyte system was set up by randomly placing 50 H, 1000 H₂O and 50 NO₂⁻ in a simulation box. After geometry optimization, the MD simulations were performed under the universal field with the total simulation time of 5 ns at a time step of 1 fs.

The radial distribution function (RDF) is calculated as⁴

$$g(\mathbf{r}) = \frac{dN}{4\pi\rho r^2 dr}$$
(5)

where dN is the amount of NO₂⁻/H in the shell between the central particle *r* and *r*+*dr*, ρ is the number density of NO₂⁻/H.

Figure S1. (a) TEM and (b) HRTEM images of pristine C_3N_4 .

Figure S2. Variations of energy and temperature during the AIMD simulation for assessing the thermodynamic stability of Ni_1/C_3N_4 .

Figure S3. DOS profiles of (a) C_3N_4 and (b) Ni_1/C_3N_4 .

Figure S4. Average potential profiles along c-axis direction for calculating the work functions of (a) C_3N_4 and (b) Ni_1/C_3N_4 .

Figure S5. (a) UV-vis absorption spectra of $\rm NH_4^+$ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of $\rm NH_3$ concentrations.

Figure S6. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of N_2H_4 concentrations.

Figure S7. FEs of different products on Ni_1/C_3N_4 at various potentials.

Figure S8. Partial current densities of various products on Ni_1/C_3N_4 at different potentials.

Figure S9. Amounts of produced NH_3 on Ni_1/C_3N_4 under different conditions: (1) electrolysis in NO_2^- -containing solution at -0.7 V, (2) electrolysis in NO_2^- -free solution at -0.7 V, (3) electrolysis in NO_2^- -containing solution at open-circuit potential (OCP), (4) before electrolysis.

Figure S10. CV measurements at different scanning rates for (a, b) Ni_1/C_3N_4 and (c, d) C_3N_4 , and corresponding calculated ECSA.

Figure S11. Comparison of the ECSA-normalized NH₃ yield rates and FE_{NH3} between C_3N_4 and Ni_1/C_3N_4 at -0.7 V.

Figure S12. Charge density difference of absorbed NO_2^- on C_3N_4

Figure S13. Optimized atomic structures of the reaction intermediates on C_3N_4 .

Figure S14. Binding free energies of *NO₂ and *H on Ni₁/C₃N₄.

Table S1. Structural parameters extracted from the EXAFS fitting results of Ni_1/C_3N_4

Sample	Shell	CN	R (Å)	$\sigma^2(10^{-3}\text{\AA})$	$\Delta E_0 (eV)$	R factor
Ni_1/C_3N_4	Ni-N	2.2	1.86	7.8	4.1	0.008

CN is the coordination number, R is interatomic distance, σ^2 is Debye-Waller factor, ΔE_0 is edge-energy shift, R factor is used to value the goodness of the fitting.

Catalyst	Flactrolyte	NH ₃ yield rate	FE _{NH3}	Potential	Dof	
Catalyst	Diectrolyte	(µmol h ⁻¹ cm ⁻²)	(%)	(V vs RHE)	Kel.	
	0.1 M Na ₂ SO ₄	222.1	95.2	-0.7 V	5	
C0B@110 ₂ /1P	(0.1 M NO ₂ -)	255.1			0	
	0.1 M NaOH	225.4	97.7	-0.4 V	6	
Ag@NIO/CC	(0.1 M NO ₂ -)	255.4			U	
	0.1 M NaOH	522.5	93.2	-0.6 V	7	
Cu/JDC/CP	(0.1 M NO ₂ -)	525.5				
	0.5 M LiClO ₄	411.2	82.6	-0.5 V	8	
110@1102/11	(0.1 M NO ₂ -)	411.5			U	
CE@Cu O	0.1 M PBS	441 9	94.2	-0.6 V	9	
Cr@Cu ₂ O	(0.1 M NO ₂ -)	441.0			,	
N: T:O /TD	0.1 M NaOH	280.27	94.89	-0.5 V	10	
NI-110 ₂ /1P	(0.1 M NO ₂ -)	560.27				
V T:O /TD	0.1 M NaOH	540.9	93.2 @ -0.6	-0.7 V	11	
V-110 ₂ /1P	(0.1 M NO ₂ -)	540.8				
NIS OTIO /T	0.1 M NaOH	105 1	92.1	-0.5 V	12	
$N1S_2(W) 11O_2/1$	(0.1 M NO ₂ -)	403.4				
N; D/NE	0.1 M PBS	101.2	90.2±3.0	-0.3 V	13	
1N12P/1NF	(0.1 M NO ₂ -)	191.3			10	
N; /C N	0.5 M Na ₂ SO ₄	102 2	96.9	-0.7 V	This	
INI ₁ /C ₃ IN ₄	(0.1 M NO ₂ -)	403.3			work	

Table S2. Comparison of the optimum NH_3 yield and FE_{NH3} for the recently reported state-of-the-art NO2RR electrocatalysts at ambient conditions

Supplementary references

- 1. D. Zhu, L. Zhang, R. E. Ruther and R. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nat. Mater.*, 2013, **12**, 836-841.
- G. W. Watt and J. D. Chrisp, Spectrophotometric method for determination of hydrazine, *Anal. Chem.*, 1952, 24, 2006-2008.
- A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, *Energy Environ. Sci.*, 2010, 3, 1311-1315.
- K. Chu, Y. Luo, P. Shen, X. Li, Q. Li and Y. Guo, Unveiling the synergy of O-vacancy and heterostructure over MoO_{3-x}/MXene for N₂ electroreduction to NH₃, *Adv. Energy. Mater.*, 2022, 12, 2103022.
- L. Hu, D. Zhao, C. Liu, Y. Liang, D. Zheng, S. Sun, Q. Li, Q. Liu, Y. Luo, Y. Liao, L. Xie and X. Sun, Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia, *Inorg. Chem. Front.*, 2022, 9, 6075-6079.
- Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. Ali Alshehri, M. S. Hamdy, Q. Kong and X. Sun, Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis, *J. Colloid Interf. Sci.*, 2022, 623, 513-519.
- L. Ouyang, L. Yue, Q. Liu, Q. Liu, Z. Li, S. Sun, Y. Luo, A. Ali Alshehri, M. S. Hamdy, Q. Kong and X. Sun, Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitriteto-ammonia conversion, *J. Colloid Interf. Sci.*, 2022, **624**, 394-399.
- S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo and X. Sun, ITO@TiO₂ nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH₃ production under ambient conditions, *eScience*, 2022, 2, 382-388.
- Q. Chen, X. An, Q. Liu, X. Wu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X. Sun, Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@Cu₂O catalyst, *Chem. Commun.*, 2022, 58, 517-520.
- Z. Cai, C. Ma, D. Zhao, X. Fan, R. Li, L. Zhang, J. Li, X. He, Y. Luo, D. Zheng, Y. Wang, B. Ying, S. Sun, J. Xu, Q. Lu and X. Sun, Ni doping enabled improvement in electrocatalytic nitrite-toammonia conversion over TiO₂ nanoribbon, *Mater. Today Energy*, 2023, **31**, 101220.
- H. Wang, F. Zhang, M. Jin, D. Zhao, X. Fan, Z. Li, Y. Luo, D. Zheng, T. Li, Y. Wang, B. Ying, S. Sun, Q. Liu, X. Liu and X. Sun, V-doped TiO₂ nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia, *Mater. Today Phys.*, 2023, **30**, 100944.
- 12. X. He, L. Hu, L. Xie, Z. Li, J. Chen, X. Li, J. Li, L. Zhang, X. Fang, D. Zheng, S. Sun, J. Zhang, A. Ali Alshehri, Y. Luo, Q. Liu, Y. Wang and X. Sun, Ambient ammonia synthesis via nitrite electroreduction over NiS₂ nanoparticles-decorated TiO₂ nanoribbon array, *J. Colloid Interf. Sci.*, 2023, 634, 86-92.
- 13. G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, Ni₂P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions, *J. Colloid Interf. Sci.*, 2022, **606**, 1055-1063.