Supporting Information

Highly Stable and Differentially Arranged Hexanuclear Lanthanide Clusters: Structure, Assembly Mechanism, and Magnetic Resonance Imaging

Wen-Wen Qin, ${ }^{\mathrm{a}}$ Yun-Lan Li, ${ }^{\mathrm{a}}$ Zhong-Hong Zhu, ${ }^{\text {a,* }}$ Fu-Pei Liang, ${ }^{\text {a }}$ Qiong Hu, ${ }^{\mathrm{b}, *}$ Hua-Hong Zou ${ }^{\text {a,* }}$ ${ }^{\text {a }}$ School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China *E-mail (Corresponding author): 18317725515@163.com (Z.-H. Zhu), gxnuchem@foxmail.com (H.-H. Zou).
${ }^{\mathrm{b}}$ Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China *E-mail (Corresponding author): huqiongscut@163.com (Q. Hu).

Keywords: Lanthanide cluster; Assembly mechanism; Solvothermal synthesis; Precise synthesis; Magnetic properties

Table of Contents:

Supporting Tables	
Table S1	Crystallographic data of the clusters Dy_{6} and $\mathbf{H N P}-\mathrm{Dy}_{6}$.
Table S2	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of cluster Dy_{6}.
Table S3	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of cluster HNP-Dy ${ }_{6}$.
Table S4	SHAPE analysis of the Dy(III) in cluster $\mathbf{D y}_{6}$.
Table S5	SHAPE analysis of the Dy(III) in cluster HNP-Dy ${ }_{6}$.
Table S6	Major species assigned in the HRESI-MS of $\mathbf{D y}_{6}$ in positive mode.
Table S7	Major species assigned in the HRESI-MS of HNP-Dy ${ }_{6}$ in positive mode.
Table S8	Major species assigned in the HRESI-MS of $\mathbf{D y}_{6}$ with different in-source CID (0100 eV) in positive mode.
Table S9	Major species assigned in the HRESI-MS of HNP-Dy 6 with different in-source CID ($0-100 \mathrm{eV}$) in positive mode.
Table S10	Major species assigned in the Time-dependent HRESI-MS of $\mathbf{D y}_{6}$ in positive mode.
Table S11	Major species assigned in the Time-dependent HRESI-MS of HNP-Dy $\mathbf{6}_{6}$ in positive mode.
Supporting Figures	
Figure S1	Infrared spectra (IR) of clusters $\mathbf{D y}_{6}, \mathbf{G d}_{\mathbf{6}}$ (a) and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).
Figure S2	TG curve of $\mathbf{D y}_{6}$ (a) and $\mathbf{H N P}-\mathrm{Dy}_{6}$ (b).
Figure S3	Powder diffraction pattern (PXRD) of clusters $\mathbf{D y}_{6}, \mathbf{G d}_{6}(\mathrm{a})$ and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).
Figure S4	The superposed simulated and observed spectra of several species for cluster $\mathbf{D y}_{6}$.
Figure S5	The superposed simulated and observed spectra of several species for cluster HNP-Dy ${ }_{6}$.
Figure S6	The superposed simulated and observed spectra of several species for $\mathbf{D y}_{6}$ with different in-source CID ($0-100 \mathrm{eV}$).
Figure S7	The superposed simulated and observed spectra of several species for HNP-Dy 6 with different in-source CID ($0-100 \mathrm{eV}$).
Figure S8	Time-dependent HRESI-MS spectra for the assembly of $\mathbf{D} \mathbf{y}_{6}$ in positive mode.
Figure S9	Time-dependent HRESI-MS spectra for the assembly of HNP-Dy \mathbf{y}_{6} in positive mode.
Figure S10	Stability of $\mathbf{G d}_{6}$ dispersed in (a) $\mathrm{H}_{2} \mathrm{O}$ and (b) PBS for 5 days, UV-Vis absorption spectra of $\mathbf{G d}_{6}$ in (c) $\mathrm{H}_{2} \mathrm{O}$ and (d) PBS.
Figure S11	Temperature dependence of $\chi_{\mathrm{m}} T$ for (a) $\mathbf{D y}_{6}$ and (c) $\mathbf{H N P}-\mathbf{D y}_{6}, M$ vs. H / T plots of (b) Dy_{6} and (d) $\mathbf{H N P}-\mathrm{Dy}_{6}$.
Figure S12	Loop curve graph of Dy \mathbf{y}_{6} (a) and HNP-Dy ${ }_{6}$ (b) at 2 K .
Figure S13	Temperature dependence of the real $\left(\chi^{\prime}\right)$ and imaginary $\left(\chi^{\prime \prime}\right)$ ac susceptibilities at different frequencies in the 0 Oe dc fields for $\mathbf{D y}_{6}$ (a) and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).
Figure S14	Magnetic entropy change $\left(-\Delta S_{\mathrm{m}}\right)$ of $\mathbf{G d}_{6}$ at different temperatures ($2-8 \mathrm{~K}$) and magnetic fields (0-7 T).

Experimental Section

Materials and Measurements.

All reagents were obtained from commercial sources and used without further purification. Elemental analyses for C, H and O were performed on a varia MICRO cube. The infrared spectra were carried out on a Pekin-Elmer Two spectrophotometer with pressed KBr pellets. The powder Xray diffraction (PXRD) spectra were measured on a Rigaku D/Max-3c diffractometer with Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Thermogravimetric analyses were performed on a PerkinElmer PyrisDiamond TG-DTA instrument under an N_{2} atmosphere using a heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from room temperature up to $1000{ }^{\circ} \mathrm{C}$. Magnetic properties were performed on a Superconducting Quantum Interference Device (SQUID) magnetometer. The diamagnetism of all constituent atoms was corrected with Pascal's constant.

Single crystal X-ray crystallography.

Diffraction data for the complex were collected on a ROD, Synergy Custom DW system, HyPix diffractometer (Mo-K α radiation and $\lambda=0.71073 \AA$) in Φ and ω scan modes. The structures were solved by direct methods, and refined by a full-matrix least-squares method on the basis of F^{2} by using SHELXL and OLEX2. ${ }^{[1]}$ Anisotropic thermal parameters were applied to all non-hydrogen atoms. Hydrogen atoms were generated geometrically. The crystallographic data for $\mathbf{D y}_{6}$ and HNPDy_{6} are listed in Table S1, and selected bond lengths and angles are given in Table S2 and S3. The CCDC reference numbers for the crystal structures of $\mathbf{D y}_{\mathbf{6}}$ and $\mathbf{H N P}-\mathbf{D y}_{6}$ are 2283643 and 2283644.

HRESI-MS measurement.

HRESI-MS measurements were conducted at a capillary temperature of $275^{\circ} \mathrm{C}$. Aliquots of the solution were injected into the device at $2 \mu \mathrm{~L}$. The mass spectrometer used for the measurements was a ThermoExactive and the data were collected in positive and negative ion modes. The spectrometer was previously calibrated with the standard tune mix to give a precision of $c a .2 \mathrm{ppm}$. within the region of $m / z=200-4000$. The capillary voltage was 50 V , the tube lens voltage was 150 V , and the skimmer voltage was 25 V .
[1] Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

The synthesis method.

Synthesis of $\quad \mathbf{H}_{2} \mathrm{~L}^{1} \quad\left(N^{2}, N^{\prime 6}\right.$-bis(4-(diethylamino)-2-hydroxybenzylidene)pyridine-2,6dicarbohydrazide): Pyridine-2,6-dicarbohydrazide ($5 \mathrm{mmol}, 0.976 \mathrm{~g}$) was taken in a 50 mL roundbottomed flask and dissolved in 40 mL of ethanol and stirred for 30 min . $4-(N, N-$ Diethylamino)salicylaldehyde ($10 \mathrm{mmol}, 1.93 \mathrm{~g}$) was added in portions to the aforesaid solution of pyridine-2,6-dicarbohydrazide. To this, two drops of concentrated sulfuric acid was added and the solution refluxed for 12 h . The resulting yellow solid ($2.10 \mathrm{~g}, 76.92 \%$) was filter under vacuum, washed methanol followed by drying under reduced pressure.

Synthesis of $\quad \mathbf{H}_{2} \mathrm{~L}^{2} \quad\left(N^{2}, N^{\prime 6}\right.$-bis($\left.(2-h y d r o x y n a p h t h a l e n-1-y l) m e t h y l e n e\right)$ pyridine-2,6dicarbohydrazide): Pyridine-2,6-dicarbohydrazide ($5 \mathrm{mmol}, 0.976 \mathrm{~g}$) was taken in a 50 mL roundbottomed flask and dissolved in 40 mL of ethanol and stirred for 30 min . 2-Hydroxy-1naphthaldehyde ($10 \mathrm{mmol}, 1.72 \mathrm{~g}$) was added in portions to the aforesaid solution of pyridine-2,6dicarbohydrazide. To this, two drops of concentrated sulfuric acid was added and the solution refluxed for 12 h . The resulting yellow solid ($1.92 \mathrm{~g}, 73.80 \%$) was filter under vacuum, washed methanol followed by drying under reduced pressure.

Synthesis of Dy_{6} : A mixture of $\mathrm{H}_{2} \mathrm{~L}^{1}(0.05 \mathrm{mmol}, 27.3 \mathrm{mg}), 0.4 \mathrm{mmol} \mathrm{Dy}(\mathrm{OAc})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (approximately 165 mg), and triethylamine ($100 \mu \mathrm{~L}$) were dissolved in mixed solvent $\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}\right.$ $=1.0 \mathrm{~mL}: 0.3 \mathrm{~mL})$ in a Pyrex tube. The tube was sealed and heated at $80^{\circ} \mathrm{C}$ in an oven for 2 days, orange crystals were observed with a yield of about 45% (based on $\mathrm{Dy}(\mathrm{OAc})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$). Elemental analysis theoretical value $\left(\mathrm{C}_{70} \mathrm{H}_{92} \mathrm{Dy}_{6} \mathrm{~N}_{14} \mathrm{O}_{28}\right)$: $\mathrm{C}, 32.94 \% ; \mathrm{H}, 3.63 \% ; \mathrm{N}, 7.68 \%$; experimental value: C, 32.82%; H, 3.51%; N, 7.56%. Infrared spectrum data (IR, KBr pellet, cm^{-1}): 3429 (m), 2970 (m), 1600 (s), 1565 (s), 1432 (w), 1136 (s), 1077 (s), 829 (m), 758 (m).

Synthesis of $\mathbf{G d}_{6}$: A mixture of $\mathrm{H}_{2} \mathrm{~L}^{1}(0.05 \mathrm{mmol}, 27.3 \mathrm{mg}), 0.4 \mathrm{mmol} \operatorname{Gd}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (approximately 141 mg), and triethylamine ($100 \mu \mathrm{~L}$) were dissolved in mixed solvent $\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}\right.$ $=1.0 \mathrm{~mL}: 0.3 \mathrm{~mL})$ in a Pyrex tube. The tube was sealed and heated at $80^{\circ} \mathrm{C}$ in an oven for 2 days, orange crystals were observed with a yield of about 44% (based on $\mathrm{Gd}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$). Infrared spectrum data (IR, KBr pellet, cm^{-1}): 3429 (m), 2970 (m), 1601 (s), 1568 (s), 1431 (w), 1138 (s), 1077 (s), 829 (m), 758 (m).

Synthesis of HNP-Dy ${ }_{6}$: A mixture of $\mathrm{H}_{2} \mathrm{~L}^{2}(0.05 \mathrm{mmol}, 25.2 \mathrm{mg}), 0.4 \mathrm{mmol} \mathrm{Dy}(\mathrm{OAc})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (approximately 165 mg), and triethylamine ($100 \mu \mathrm{~L}$) were dissolved in 2.0 mL of $\mathrm{CH}_{3} \mathrm{OH}$ in a Pyrex
tube. The tube was sealed and heated at $80^{\circ} \mathrm{C}$ in an oven for 2 days, yellow crystals were observed with a yield of about 40% (based on $\mathrm{Dy}(\mathrm{OAc})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$). Elemental analysis theoretical value $\left(\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{Dy}_{6} \mathrm{~N}_{10} \mathrm{O}_{34}\right)$: C, 34.22%; H, 3.53%; N, 5.25%; experimental value: $\mathrm{C}, 34.06 \% ; \mathrm{H}, 3.47 \%$; N, 5.16%. Infrared spectrum data (IR, KBr pellet, cm^{-1}): 3429 (m), 1601 (s), 1384 (s), 1350 (s), 1200 (m), 827 (m), 752 (s).

Solution MRI imaging experiments.

$\mathbf{G d}_{\mathbf{6}}$: Prepare 1 mL of $\mathbf{G d}_{\mathbf{6}}$ solution with a concentration of $23.5 \mu \mathrm{M}$ (the content of DMSO is less than 1%, which is used for solubilization). After conversion of results $\left(\mathbf{G d}_{6}: G d(I I I)\right.$ ions $\left.=1: 6\right)$, the molar concentration of $\mathrm{Gd}(\mathrm{III})$ ions in the above-mentioned $\mathbf{G d}_{\mathbf{6}}$ mother liquor was obtainedas 141.0 $\mu \mathrm{M}$. For solution MRI imaging experiments, the above-mentioned solutions containing $\mathrm{Gd}(\mathrm{III})$ ions at a concentration of $141.0 \mu \mathrm{M}$ were diluted to $0.11,0.23,0.35,0.47,0.59$ and $0.71 \mu \mathrm{M}$, respectively.

Table S1. Crystallographic data of the clusters Dy $_{6}$ and HNP-Dy ${ }_{6}$.

	$\mathbf{D y}_{6}$	HNP-Dy $_{6}$
Empirical formula	$\mathrm{C}_{70} \mathrm{H}_{92} \mathrm{Dy}_{6} \mathrm{~N}_{14} \mathrm{O}_{28}$	$\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{Dy}_{6} \mathrm{~N}_{10} \mathrm{O}_{34}$
Formula weight	2550.95	2664.98
$T, \mathrm{~K}$	295 K	296 K
Crystal system	triclinic	triclinic
Space group	$P-1$	$P-1$
a, \AA	$10.2039(1)$	$11.4673(8)$
b, \AA	$11.9012(1)$	$14.0210(7)$
c, \AA	$19.2989(2)$	$14.7578(6)$
$\alpha,{ }^{\circ}$	86.127	106.670
$\beta,{ }^{\circ}$	86.641	90.919
$\gamma,{ }^{\circ}$	67.183	96.016
V, \AA^{3}	$2153.97(4)$	$2257.9(2)$
Z	1	1
$D_{\mathrm{c}}, \mathrm{g}$ cm ${ }^{3}$	1.967	1.960
μ, mm $^{-1}$	27.97	26.76
$F(000)$	1229	1287
C°	4.592 to 133.198	6.26 to 153.3
2θ range for data collection $/{ }^{\circ}$	23012	35481
Reflns coll.	7591	8747
Unique reflns	0.0896	0.1266
$R_{\text {int }}$	0.0957	0.1098
$R_{1}{ }^{\text {a }}(I>2 \sigma(I))$	0.2661	0.3115
$w R_{2}{ }^{\mathrm{b}}($ all data $)$	1.049	1.090
GOF		

$$
{ }^{\mathrm{a}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| \mathrm{F}_{\mathrm{o}},{ }^{\mathrm{b}} \mathrm{w} R_{2}=\left[\Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}
$$

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of cluster $\mathbf{D y}_{6}$.

Bond lengths (\AA)					
Dy1-O4	2.195(10)	Dy2-O13	2.338(8)	Dy3-O10	$2.303(10)$
Dy1-O14	2.249(11)	Dy2-O6	2.344(10)	Dy3-O1	2.315 (9)
Dy1-O7	2.290(10)	Dy2-O2	2.353(9)	Dy3-O5 ${ }^{\text {i }}$	2.352(9)
Dy1-O1i	2.323(9)	Dy2-O12	2.389 (11)	Dy3-O8	2.394(10)
Dy1-O3	2.328(9)	Dy2-O5 ${ }^{\text {i }}$	2.403(9)	Dy3-O13 ${ }^{\text {i }}$	2.446(9)
Dy1-O13	2.427(9)	Dy2-O3	2.448(9)	Dy3-N2	2.492(10)
Dy1-N6	2.494(13)	Dy2-N4	2.532(11)	Dy3-O11	$2.505(12)$
Dy2-O5	2.313(9)	Dy3-O2	2.295(10)		
Bond angles (${ }^{\circ}$)					
O4-Dy 1-O14	84.5(4)	O6-Dy2-O2	101.6(3)	O2-Dy3-O5 ${ }^{\text {i }}$	71.9(3)
O4-Dy1-O7	98.2(4)	O5-Dy2-O12	136.1(4)	$\text { O10-Dy3-O5 }{ }^{\text {i }}$	83.7(3)
O14-Dy1-O7	87.0(4)	O13-Dy2-O12	80.1(4)	O1-Dy3-O5i	132.8(3)
$\mathrm{O} 4-\mathrm{Dy} 1-\mathrm{O} 1^{\mathrm{i}}$	98.9(4)	O6-Dy2-O12	71.6(4)	O2-Dy3-O8	109.2(4)
O14-Dy1-O1	95.4(4)	O2-Dy2-O12	105.4(4)	O10-Dy3-O8	72.2(4)
$\mathrm{O} 7-\mathrm{Dy} 1-\mathrm{Ol}^{\mathrm{i}}$	162.9(3)	O5-Dy2-O5i	70.4(4)	O1-Dy3-O8	81.2(4)
O4-Dy1-O3	137.0(4)	O13-Dy2-O5i	91.9(3)	O5i-Dy3-O8	137.4(4)
O14-Dy1-O3	$138.3(4)$	O6-Dy2-O5i	140.3(3)	O2-Dy3-O13i	77.3 (3)
O7-Dy1-O3	83.1(3)	O2-Dy2-O5 ${ }^{\text {i }}$	70.0(3)	O10-Dy3-O13 ${ }^{\text {i }}$	120.9(4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Dy} 1-\mathrm{O} 3$	83.9(3)	O12-Dy2-O5	73.6(4)	O1-Dy3-O13i	71.9(3)
O4-Dy 1-O13	158.6(3)	O5-Dy2-O3	77.4(3)	$\text { O5ㄴ-Dy3-O13 }{ }^{\text {i }}$	74.1(3)
O14-Dy1-O13	77.4(4)	O13-Dy2-O3	62.2(3)	O8-Dy3-O13i	148.4(3)
O7-Dy 1-O13	$92.0(3)$	O6-Dy2-O3	74.5(3)	O2-Dy3-N2	63.1(3)
O1i-Dy1-O13	72.1(3)	O2-Dy2-O3	126.0(3)	O10-Dy3-N2	143.8(3)
O3-Dy1-O13	$62.6(3)$	O12-Dy2-O3	122.6(4)	O1-Dy3-N2	72.4(3)
O4-Dy1-N6	72.7(4)	O5i-Dy2-O3	142.6(3)	O5i-Dy3-N2	132.1(3)
O14-Dy1-N6	156.4(4)	O5-Dy2-N4	78.8(3)	O8-Dy3-N2	75.7(4)
O7-Dy1-N6	90.4(4)	O13-Dy2-N4	124.2(3)	O13i-Dy3-N2	80.6(3)
O1i-Dy1-N6	94.0(4)	O6-Dy2-N4	77.8(3)	O2-Dy3-O11	68.9(4)
O3-Dy1-N6	64.4(4)	O2-Dy2-N4	62.8(3)	O10-Dy3-O11	79.2(4)
O13-Dy1-N6	126.2(3)	O12-Dy2-N4	144.2(4)	O1-Dy3-O11	150.7(4)
O5-Dy2-O13	77.0(3)	O5i-Dy2-N4	125.0(3)	O5i-Dy3-O11	71.2(4)

O5-Dy2-O6	$149.2(3)$	O3-Dy2-N4	$63.9(3)$	O8-Dy3-O11	$70.2(4)$
O13-Dy2-O6	$100.3(3)$	O2-Dy3-O10	$144.5(4)$	O13i-Dy3-O11	$137.3(4)$
O5-Dy2-O2	$85.0(3)$	O2-Dy3-O1	$129.0(3)$	N2-Dy3-O11	$105.2(4)$
O13-Dy2-O2	$158.0(3)$	O10-Dy3-O1	$86.5(4)$		

Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of cluster HNP-Dy ${ }_{6}$.

Bond lengths (\AA)					
Dy1-O6	2.261(14)	Dy2-O3	2.329(11)	Dy3-O4	2.199(14)
Dy1-O2	2.337(12)	Dy2-O2	2.348(11)	Dy3-O3	$2.365(12)$
Dy1-O1	2.348(13)	Dy2-O10	2.357(11)	Dy3-09	$2.374(11)$
Dyl-O9 ${ }^{\text {i }}$	2.363(13)	Dy2-O9	2.373(12)	Dy3-O7 ${ }^{\text {i }}$	2.381(16)
Dy1-O8	2.39(2)	Dy2-O11	2.391(12)	Dy3-O12	$2.424(15)$
Dy1-O5	$2.400(16)$	Dy2-O10 ${ }^{\text {i }}$	2.400 (11)	Dy3-O1i	2.462(12)
Dy1-N1	2.468(16)	Dy2-O13	2.411(15)	Dy3-O14	2.47(2)
Dy1-O10 ${ }^{\text {i }}$	$2.475(11)$	Dy2-N3	2.542(14)	Dy3-N5	$2.510(17)$
Bond angles (${ }^{\circ}$)					
O6-Dy1-O2	148.4(4)	O3-Dy2-O2	127.1(4)	O4-Dy3-O3	134.4(5)
O6-Dy1-O1	$77.6(5)$	O3-Dy2-O10	119.5(4)	O4-Dy3-O9	151.1(5)
O2-Dy1-O1	121.3(5)	O2-Dy2-O10	104.5(4)	O3-Dy3-O9	73.0(4)
O6-Dy1-O9i	76.5(5)	O3-Dy2-O9	73.6(4)	O4-Dy3-O7i	$90.7(6)$
$\mathrm{O} 2-\mathrm{Dy} 1-\mathrm{O} 9^{\mathrm{i}}$	85.6(4)	O2-Dy2-O9	153.6(4)	O3-Dy3-O7i	$77.4(5)$
O1-Dy1-O9i	71.5(4)	O10-Dy2-O9	71.2(4)	O9-Dy3-O7i	107.1(5)
O6-Dy1-O8	$102.4(7)$	O3-Dy2-O11	77.4(4)	O4-Dy3-O12	$98.8(6)$
O2-Dy1-O8	$76.5(7)$	O2-Dy2-O11	89.7(5)	O3-Dy3-O12	$73.5(5)$
O1-Dy1-O8	145.6(6)	O10-Dy2-O11	137.6(4)	O9-Dy3-O12	$78.7(5)$
O9i-Dy1-O8	142.6(6)	O9-Dy2-O11	78.5(4)	O7i-Dy3-O12	147.1(5)
O6-Dy1-O5	79.4(6)	O3-Dy2-O10i	148.0(4)	$\mathrm{O} 4-\mathrm{Dy} 3-\mathrm{Ol}^{\mathrm{i}}$	94.8(5)
O2-Dy1-O5	126.6(5)	O2-Dy2-O10i	70.6(4)	$\mathrm{O} 3-\mathrm{Dy} 3-\mathrm{O} 1^{\mathrm{i}}$	122.9(4)
O1-Dy1-O5	78.6(6)	O10-Dy2-O10 ${ }^{\text {i }}$	71.6(5)	$\text { O9-Dy3-O1 }{ }^{\mathrm{i}}$	69.3(4)
O9i-Dy1-O5	$144.9(5)$	O9-Dy2-O10i	83.5(4)	$\text { O7i-Dy3-O1 }{ }^{\text {i }}$	74.7(5)
O8-Dy1-O5	67.8(7)	O11-Dy2-O10	76.3(4)	$\text { O12-Dy3-O1 }{ }^{\text {i }}$	$135.0(5)$
O6-Dy1-N1	145.4(5)	O3-Dy2-O13	84.2(4)	O4-Dy3-O14	$75.9(7)$
O2-Dy1-N1	64.9(4)	O2-Dy2-O13	81.7(5)	O3-Dy3-O14	135.4(7)

O1-Dy1-N1	71.5(5)	O10-Dy2-O13	73.3(4)	O9-Dy3-O14	76.4(6)
O9 ${ }^{\text {i-Dy }}$ - $1-\mathrm{N} 1$	107.2(5)	O9-Dy2-O13	119.9(5)	O7i-Dy3-O14	143.5(7)
O8-Dy1-N1	94.7(6)	O11-Dy2-O13	149.0(4)	O12-Dy3-O14	69.3(7)
O5-Dy1-N1	79.6 (5)	O10i-Dy2-O13	127.3(4)	O1 ${ }^{\text {i}-D y 3-O 14 ~}$	72.8(7)
O6-Dy1-O10 ${ }^{\text {i }}$	$79.8(5)$	O3-Dy2-N3	63.8(4)	O4-Dy3-N5	$70.5(5)$
O2-Dy1-O10 ${ }^{\text {i }}$	69.5(4)	O2-Dy2-N3	63.3(4)	O3-Dy3-N5	63.9(4)
O1-Dy1-O10 ${ }^{\text {i }}$	138.2(4)	O10-Dy2-N3	143.4(4)	O9-Dy3-N5	135.2(4)
O9i-Dy $1-\mathrm{O} 10{ }^{\text {i }}$	69.3(4)	O9-Dy2-N3	135.0(4)	O7i-Dy3-N5	75.5(5)
O8-Dy1-O10 ${ }^{\text {i }}$	73.6(6)	O11-Dy2-N3	78.6 (5)	O12-Dy3-N5	78.2(6)
O5-Dy1-O10 ${ }^{\text {i }}$	130.4(5)	O10i-Dy2-N3	127.0(4)	O1i-Dy3-N5	146.4(5)
N1-Dy1-O10 ${ }^{\text {i }}$	134.4(4)	O13-Dy2-N3	70.8(5)	O14-Dy3-N5	128.3(7)

Table S4. SHAPE analysis of the Dy(III) in cluster Dy \mathbf{D}_{6}.

Label	Shape	Symmetry	Distortion $\left(^{\circ}\right)$ Dy1
OP-8	$D_{8 \mathrm{~h}}$	Octagon	44.094
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	35.496
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	31.256
CU-8	O_{h}	Cube	28.991
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	23.468
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	24.673
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	29.886
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	39.795
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	22.900
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	24.299
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	23.867
TT-8	T_{d}	Triakis tetrahedron	27.667
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	36.830

Label	Shape	Symmetry	Distortion (${ }^{\circ}$) Dy2
OP-8	$D_{8 \mathrm{~h}}$	Octagon	47.368
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	36.884
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	28.688
CU-8	O_{h}	Cube	30.401
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	27.441
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	26.497
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	26.688
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	38.847
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	26.540

BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	26.281
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	29.186
TT-8	T_{d}	Triakis tetrahedron	29.269
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	38.782
Label	Shape	Symmetry	Distortion ($^{\circ}$)
			Dy3
HP-7	$D_{7 \mathrm{~h}}$	Heptagon	45.496
HPY-7	$C_{6 \mathrm{v}}$	Heptagonal pyramid	27.104
PBPY-7	$D_{5 \mathrm{~h}}$	Pentagonal bipyramid	26.955
COC-7	$C_{3 \mathrm{v}}$	Capped octahedron	29.777
CTPR-7	$C_{2 \mathrm{v}}$	Capped trigonal prism	28.888
JPBPY-7	$D_{5 \mathrm{~h}}$	Johnson pentagonal bipyramid (J13)	22.080
JETPY-7	$C_{3 \mathrm{v}}$	Elongated triangular pyramid (J7)	36.682

Table S5. SHAPE analysis of the Dy(III) in cluster HNP-Dy ${ }_{6}$.

Label	Shape	Symmetry	Distortion (${ }^{\circ}$) Dy1
OP-8	$D_{8 \mathrm{~h}}$	Octagon	45.913
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	37.158
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	32.223
CU-8	O_{h}	Cube	32.187
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	25.393
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	24.985
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	32.585
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	41.206
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	23.531
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	25.056
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	24.709
TT-8	T_{d}	Triakis tetrahedron	30.668
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	39.882

Label	Shape	Symmetry	Distortion $\left({ }^{\circ}\right)$ Dy2
OP-8	$D_{8 \mathrm{~h}}$	Octagon	44.072
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	35.389
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	29.866
CU-8	O_{h}	Cube	30.321
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	26.024
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	25.248
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	27.258
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	40.005
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	25.637

BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	24.601
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	26.990
TT-8	T_{d}	Triakis tetrahedron	29.241
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	37.982
			Distortion (${ }^{\circ}$)
Label	Shape	Symmetry	Dy3
OP-8	$D_{8 \mathrm{~h}}$	Octagon	47.810
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	36.974
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	33.740
CU-8	O_{h}	Cube	30.782
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	25.697
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	25.391
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	31.608
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	40.035
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	25.885
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	26.108
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	26.906
TT-8	T_{d}	Triakis tetrahedron	29.643
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	38.557

Figure S1. Infrared spectra (IR) of clusters $\mathbf{D y}_{6}, \mathbf{G d}_{6}$ (a) and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).
Fourier transform infrared absorption spectroscopy (FT-IR) results indicated that the absorption peaks of $\mathbf{D y}_{6}$ are mainly located at $3429,2970,1600,1565,1432,1136 \mathrm{~cm}^{-1}$, respectively. The absorption peak at around $3429 \mathrm{~cm}^{-1}$ cans be attributed to the stretching vibration of $v(\mathrm{HO}-\mathrm{H})$ in the $\mathrm{H}_{2} \mathrm{O}$ molecule. The peak around $2970 \mathrm{~cm}^{-1}$ can be attributed to the stretching vibration of $-\mathrm{CH}_{3}$. The strong peaks around $1600 \mathrm{~cm}^{-1}$ and $1565 \mathrm{~cm}^{-1}$ can be attributed to the $\mathrm{C}=\mathrm{N}$ stretching vibration of the imine group ($-\mathrm{C}=\mathrm{N}-$). The peak around $1432 \mathrm{~cm}^{-1}$ can be attributed to the stretching vibration of the aromatic ring $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$. The strong absorption peak around $1136 \mathrm{~cm}^{-1}$ can be attributed to the strong vibration between the alcoholic hydroxyl groups $\mathrm{C}-\mathrm{O}$ in the ligand. The infrared ($\mathrm{IR}, \mathrm{cm}^{-1}$)
absorption spectrum of $\mathbf{G d}_{\mathbf{6}}$ clusters is similar to that of $\mathbf{D} \mathbf{y}_{\mathbf{6}}$, and its absorption peaks are mainly located at $3429,2970,1601,1568,1431,1138 \mathrm{~cm}^{-1}$, respectively. The absorption peak around 3429 cm^{-1} cans be attributed to the stretching vibration of $v(\mathrm{HO}-\mathrm{H})$ in the $\mathrm{H}_{2} \mathrm{O}$ molecule. The peak around $2970 \mathrm{~cm}^{-1}$ can be attributed to the stretching vibration of $-\mathrm{CH}_{3}$. The strong peaks around $1601 \mathrm{~cm}^{-1}$ and $1568 \mathrm{~cm}^{-1}$ can be attributed to the $\mathrm{C}=\mathrm{N}$ stretching vibration of the imine group ($-\mathrm{C}=\mathrm{N}-$). The peak around $1431 \mathrm{~cm}^{-1}$ can be attributed to the stretching vibration of the aromatic ring $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$. The strong absorption peak around $1138 \mathrm{~cm}^{-1}$ can be attributed to the strong vibration between the alcoholic hydroxyl groups $\mathrm{C}-\mathrm{O}$ in the ligand. For HNP-Dy 6 , the FT-IR absorption peaks are mainly located at $3429,1601,1384,1350,1200 \mathrm{~cm}^{-1}$, respectively. The absorption peak around 3429 cm^{-1} cans be attributed to the stretching vibration of $v(\mathrm{HO}-\mathrm{H})$ in the $\mathrm{H}_{2} \mathrm{O}$ molecule. The strong peak around $1601 \mathrm{~cm}^{-1}$ can be attributed to the $\mathrm{C}=\mathrm{N}$ stretching vibration of the imine group $(-\mathrm{C}=\mathrm{N}-)$. The peaks around $1384 \mathrm{~cm}^{-1}$ and $1350 \mathrm{~cm}^{-1}$ can be attributed to the bending vibration of $-\mathrm{CH}_{3}$. The strong absorption peak around $1200 \mathrm{~cm}^{-1}$ can be attributed to the strong vibration between the alcoholic hydroxyl groups $\mathrm{C}-\mathrm{O}$ in the ligand.

Figure S2. TG curve of $\mathbf{D y}_{\mathbf{6}}$ (a) and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).

Figure S3. Powder diffraction pattern (PXRD) of clusters $\mathbf{D y}_{\mathbf{6}}, \mathbf{G d}_{\mathbf{6}}(\mathrm{a})$ and $\mathbf{H N P}-\mathbf{D y}_{\mathbf{6}}(\mathrm{b})$.

Table S6. Major species assigned in the HRESI-MS of $\mathbf{D y}_{6}$ in positive mode.

Fragments	Calc. m / z	Exp. m / z
$(\mathrm{a})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	1163.59	1163.54
$(\mathrm{~b})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$	1172.58	1172.55
$(\mathrm{c})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$	1181.09	1181.08
$(\mathrm{~d})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{2+}$	1188.10	1188.08
$(\mathrm{e})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$	2435.17	2435.16
$(\mathrm{f})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}(\mathrm{DMF})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	2513.20	2513.18
$(\mathrm{~g})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}(\mathrm{OH})(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$	2572.26	2572.22

Figure S4. The superposed simulated and observed spectra of several species for cluster $\mathbf{D y}_{6}$.

Table S7. Major species assigned in the HRESI-MS of HNP-Dy \mathbf{y}_{6} in positive mode.

Fragments	Calc. m / z	Exp. m / z
(a) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2261.91	2261.87
(b) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	2302.96	2302.89
(c) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2321.97	2321.89
(d) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2375.96	2375.94
(e) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}$	2560.09	2560.02
(f) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$	2576.10	2576.04

Figure S5. The superposed simulated and observed spectra of several species for cluster $\mathbf{H N P}-\mathbf{D y}_{6}$.

Table S8. Major species assigned in the HRESI-MS of $\mathbf{D y}_{6}$ with different in-source CID ($0-100 \mathrm{eV}$) in positive mode.

Fragments	Calc. m / z	Exp. m/z
$(\mathrm{a})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$	1142.57	1142.55
$(\mathrm{~b})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	1163.59	1163.56
$(\mathrm{c})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$	1199.58	1199.58
$(\mathrm{~d})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}$	1209.59	1209.54
$(\mathrm{e})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$	2435.16	2435.17
$(\mathrm{f})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$	2478.17	2478.20
$(\mathrm{~g})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}(\mathrm{DMF})\right]^{+}$	2495.19	2495.20

(g) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{\mathrm{L}}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}(\mathrm{DMF})\right]^{+}$

Figure S6. The superposed simulated and observed spectra of several species for $\mathbf{D y}_{6}$ with different in-source CID ($0-100 \mathrm{eV}$).

Table S9. Major species assigned in the HRESI-MS of HNP-Dy 6 with different in-source CID (0100 eV) in positive mode.

Fragments	Calc. m / z	Exp. m / z
$(\mathrm{a})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2259.94	2259.87
$\left(\right.$ b) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2302.00	2301.89
$(\mathrm{c})\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}(\mathrm{OH})_{2}(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2374.05	2373.95
(d) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}\left(\mathrm{DMF}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}\right.$	2485.08	2485.00
$\left(\right.$ (e) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}$	2560.09	2560.04
(f) $\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}$	2562.12	2562.02

Figure S7. The superposed simulated and observed spectra of several species for $\mathbf{H N P}-\mathbf{D y}_{6}$ with different in-source CID ($0-100 \mathrm{eV}$).

Table S10.Major species assigned in the Time-dependent HRESI-MS of $\mathbf{D y}_{6}$ in positive mode.

Fragments	Calc. m/z	Exp. m/z
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{2}(\mathrm{DMF})_{8}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$	877.38	877.49
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{2}(\mathrm{DMF})_{8}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	878.37	878.48
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{2}(\mathrm{DMF})_{8}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	891.40	891.50
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{6}(\mathrm{DMF})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	1242.13	1242.03
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{6}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	1265.16	1265.08
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{6}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{+}$	1345.07	1345.23
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})_{6}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$	1416.26	1416.14
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)(\mathrm{OH})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$	1151.58	1151.53
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	1163.59	1163.54
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$	1172.58	1172.55
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$	1181.09	1181.08
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{4}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{2+}$	1188.10	1188.08
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}(\mathrm{DMF})\right]^{+}$	2496.21	2496.20
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{5}(\mathrm{DMF})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	2513.20	2513.18
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{1}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}(\mathrm{OH})(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$	2572.26	2572.22

Figure S8. Time-dependent HRESI-MS spectra for the assembly of $\mathbf{D} \mathbf{y}_{6}$ in positive mode.

Table S11.Major species assigned in the Time-dependent HRESI-MS of HNP-Dy ${ }_{6}$ in positive mode.

Fragments	Calc. m/z	Exp. m/z
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	925.16	925.03
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}(\mathrm{OH})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$	1009.10	1008.93
$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{3}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	1071.14	1070.96
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right]^{+}\right.$	1342.13	1342.08
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$	1370.16	1370.07
$\left.\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	1448.22	1448.08
$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{+}$	1524.26	1524.10
$\left[\mathrm{Dy}_{5}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{2}\right]^{+}$	1919.95	1919.98
$\left[\mathrm{Dy}_{5}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{2}(\mathrm{CH})_{3} \mathrm{OH}\right)^{+}$	1946.94	1946.96
$\left[\mathrm{Dy}_{5}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	1967.98	1967.96
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2261.91	2261.87
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}\left(\mathrm{CH}{ }_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	2302.96	2302.87
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2321.97	2321.89
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$	2375.96	2375.94
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+}$	2560.09	2560.02
$\left[\mathrm{Dy}_{6}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{O})_{4}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$	2576.10	2576.04

$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{+}$
cala. 1342.13 exp. 1342.08

$\left[\mathrm{Dy}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}(\mathrm{OH})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$ cala. 1009.10 exp. 1008.93

$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$ cala. 1370.16 exp. 1370.07

$\left[\mathrm{Dy}_{3}\left(\mathrm{~L}^{2}\right)(\mathrm{OH})_{6}(\mathrm{DMF})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$ cala. 1448.22 exp. 1448.08

Figure S9. Time-dependent HRESI-MS spectra for the assembly of $\mathbf{H N P}-\mathbf{D y}_{6}$ in positive mode.

Figure S10. Stability of $\mathbf{G d}_{6}$ dispersed in (a) $\mathrm{H}_{2} \mathrm{O}$ and (b) PBS for 5 days, UV-Vis absorption spectra of $\mathbf{G d}_{6}$ in (c) $\mathrm{H}_{2} \mathrm{O}$ and (d) PBS.

Figure S11. Temperature dependence of $\chi_{\mathrm{m}} T$ for (a) $\mathbf{D y}_{6}$ and (c) $\mathbf{H N P}-\mathbf{D y}_{6}, M$ vs. H / T plots of (b) $\mathbf{D y}_{6}$ and (d) HNP-Dy ${ }_{6}$.

Figure S12. Loop curve graph of $\mathbf{D y}_{6}$ (a) and $\mathbf{H N P}-\mathrm{Dy}_{6}$ (b) at 2 K .

Figure S13. Temperature dependence of the real (χ^{\prime}) and imaginary $\left(\chi^{\prime \prime}\right)$ ac susceptibilities at different frequencies in the 0 Oe dc fields for $\mathbf{D y}_{6}$ (a) and $\mathbf{H N P}-\mathbf{D y}_{6}$ (b).

Figure S14. Magnetic entropy change $\left(-\Delta S_{\mathrm{m}}\right)$ of $\mathbf{G d}_{6}$ at different temperatures ($2-8 \mathrm{~K}$) and magnetic fields (0-7 T).

