Supporting Information

A New Infrared Nonlinear Optical Material BaZnGeS₄ with Wide Band Gap and Large Nonlinear Optical Response

Hongshan Wang,^{a,b,†} Xueting Pan,^{a,†} Wang Zhao,^{a,b} Yu Chu,^{a,b,*} and Junjie Li^{a,b,*}

E-mails: chuy@ms.xjb.ac.cn, lijunjie@ms.xjb.ac.cn

[†] These authors contributed equally to this work.

 [[]a] Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, 40-1 South Beijing Road, Urumqi 830011, China

[[]b] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

			Band					Ref.
No.	Compound	Space	gap	SHG(×	LIDT(Δn		
		group	(eV)	AGS)	×AG5)			
1	De Zer Ce S	E 1.10	2.26	0.0	5 4	0 125	Р	This
1	BaZnGeS ₄	Faa2	3.30	0.8	5.4	0.135	Μ	work
2	SrZnGeS ₄	Fdd2	3.63	0.9	35	0.165	PM	1
3	SrCdSiS ₄	Ama2	3.61	1.1	20.4	0.165	PM	2
4	$BaZnSnS_4$	Fdd2	3.25	0.6	9.8	0.17	PM	3
5	SrZnSnS ₄	Fdd2	2.83	0.4a	N/A	0.2	PM	4
6	DallaSaS	Dura	NT/A	NI/A	NT/A	NT/A	N/	5
0	Бапдыі5 ₄	Pnn2	1N/A	IN/A	IN/A	1N/A	А	
7	β -BaHgSnS ₄	Ama2	2.77	2.8	N/A	~0.21	PM	6
8	SrHgSnS ₄	Ama2	2.72	1.9	N/A	N/A	PM	6
9	SrCdGeS ₄	Ama2	2.6	2	N/A	N/A	PM	7
10	BaCdGeS ₄	Fdd2	2.58	0.3	13	0.149	PM	8
11	$BaMnSnS_4$	Fdd2	1.9	1.2	10.2	0.168	PM	8
12	DaCdSnS	Eddo	2.2	0.7	NI/A	NI/A	NP	9
12	DaCuSII54	гии2	2.5	0.7	IN/A	1N/A	М	
13	SrCdSnS ₄	Fdd2	2.05	1.3	10	0.22	PM	10
							N/	11
1	BaZnSiSe ₄	Ama2	2.71	1/3	N/A	N/A	A	
2	BaZnGeSe ₄	Ama2	2.46	1	N/A	N/A	PM	11
3	BaHgGeSe ₄	Ama2	2.49	4.7	N/A	N/A	PM	12
4	SrHgGeSe ₄	Ama2	2.42	4.8	N/A	N/A	PM	12
5	SrZnSnSe ₄	Fdd2	2.14	0.33	5	N/A	PM	3
6	SrHgSnSe ₄	Fdd2	2.07	4.9	N/A	N/A	PM	6
7	BaHgSnSe ₄	Fdd2	1.98	5.1	N/A	~0.29	PM	6

Table S1. Structure and optical properties of the $A^{II}B^{II}C^{IV}D_{4}^{VI}$ family compounds.

8	SrCdGeSe ₄	Ama2	1.9	5	N/A	N/A	PM	7
9	BaZnSnSe ₄	Fdd2	1.88	1	5.7	0.26	PM	3
10	DeCdSeSe	E 1 10	1 70	1.6	NT/A	0.110	NP	13
10	BaCdSnSe ₄	Faaz	1.79	1.0	IN/A	@1µm	М	
11	BaCdGeSe ₄	Fdd2	1.77	0.5	N/A	N/A	PM	14
12	SrCdSnSe ₄	Fdd2	1.54	1.5	5	0.33	PM	10
13	SrZnSiSe ₄	Ama2	1.95	2	10	0.1	PM	15
14	SrMgSnSe ₄	Fdd2	2.0	/	/	/	/	16

Empirical formula	Mg _{0.6} Cd _{1.4} GeS ₄	CaCdGeS ₄	BaZnGeS ₄
Formula weight	372.78	353.31	403.08
Temperature (K)	298	298	298
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma	Fdd2
<i>a</i> (Å)	13.0381(8)	13.4040(7)	21.0291(6)
<i>b</i> (Å)	7.6057(5)	7.8948(4)	21.7992(6)
<i>c</i> (Å)	6.1008(3)	6.2078(4)	12.3028(3)
V(Å)	604.98(6)	656.92(6)	5639.8(3)
Ζ	4	4	32
D_{calc} (g/cm ⁻³)	4.093	3.572	3.798
Absorption coefficient (mm ⁻¹)	11.147	9.729	14.171
<i>F</i> (000)	682	656	5817
Completeness to θ(%)	100	100	98.30
Max. and min.	0.7456 and	0.7456 and	0.7456 and
transmission	0.5499	0.5454	0.4791
2θ range for data collection/°	6.250 to 55.002	6.078 to 55.006	4.266 to 54.958
Index ranges	$-16 \le h \le 16, -9 \le k \le 9, -7 \le l \le 7$	$-17 \le h \le 17, -10$ $\le k \le 10, -8 \le l \le 8$	$\begin{array}{l} -27 \leq h \leq 27, -28 \\ \leq k \leq 28, -14 \leq 1 \\ \leq 15 \end{array}$
Reflections collected	12804	13541	14300
Independent reflections	746 [R(int) = 0.0685]	807 [<i>R</i> (int) = 0.0707]	3022 [R(int) = 0.0409]
Observed reflections $[I > 2\sigma(I)]$	680	677	2291
Data / restraints / parameters	746 / 0 / 40	807 / 0 / 41	3022 / 1 / 132
Absorpt correction type	multi-scan	multi-scan	multi-scan
GooF on F ²	1.211	1.136	1.022
R_1 , w R_2 ($I > 2\sigma$ (I)) ^a	0.0207, 0.0666	0.0239, 0.0769	0.0176, 0.0382
R_1 , w R_2 (all data) ^a	0.0219, 0.0677	0.0244, 0.0776	0.0225, 0.0408
diff peak, hole (e/ų)	0.947, -0.901	1.496, -1.065	0.463, -1.195
Flack parameter	/	/	0.027(14)

Table S2. Crystal data and structure refinements of Mg_{0.6}Cd_{1.4}GeS₄, CaCdGeS₄, and BaZnGeS₄.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$.

Atoms	Wyck.	X	У	Z	U _{eq}	BVS ^[a]
Ba(1)	8a	0.25	0.75	0.68 (1)	14(1)	2.31
Ba(2)	8a	0.50	0.50	0.43 (1)	14(1)	2.32
Ba(3)	16b	0.50(1)	0.75 (1)	0.43 (1)	15(1)	2.32
Zn(1)	16b	0.39(1)	0.62 (1)	0.69 (1)	17(1)	1.90
Zn(2)	16b	0.67 (1)	0.62 (1)	0.47 (1)	17(1)	1.89
Ge(1)	16b	0.57 (1)	0.62 (1)	0.64 (1)	11(1)	4.05
Ge(2)	16b	0.61 (1)	0.62 (1)	0.18 (1)	11(1)	4.02
S(1)	16b	0.37 (1)	0.70(1)	0.82 (1)	15(1)	2.03
S(2)	16b	0.37(1)	0.55 (1)	0.82 (1)	14(1)	2.01
S(3)	16b	0.47 (1)	0.62 (1)	0.57 (1)	14(1)	2.14
S(4)	16b	0.53 (1)	0.62 (1)	0.30(1)	15(1)	2.04
S(5)	16b	0.55 (1)	0.63 (1)	0.82 (1)	14(1)	2.07
S(6)	16b	0.62 (1)	0.70(1)	0.57 (1)	14(1)	2.05
S(7)	16b	0.62 (1)	0.55 (1)	0.57 (1)	14(1)	2.02
S(8)	16b	0.70(1)	0.62 (1)	0.29 (1)	13(1)	2.14

Table S3. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for BaZnGeS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

Atoms	Occupancy	Wyck.	X	у	Z	Ueq	BVS ^[a]
Mg/Cd(1)	0.1/0.9	4c	0.27 (1)	-0.25	0.49 (1)	19(1)	2.08
Mg/Cd(2)	0.5/0.5	4b	0.50	0	0	24(1)	2.11
Ge(1)	1	4c	0.41 (1)	0.25	0.41 (1)	10(1)	4.02
S (1)	1	4c	0.43 (1)	-0.25	0.74 (2)	13(1)	2.11
S(2)	1	8d	0.33 (1)	0.022 (1)	0.25 (1)	13(1)	1.92
S(3)	1	4c	0.41 (1)	0.25	0.77 (2)	13(1)	2.04

Table S4. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for Mg_{0.6}Cd_{1.4}GeS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

Atoms	Occupancy	Wyck.	X	У	Z	U _{eq}	BVS ^[a]
Ca/Cd(1)	0.8/0.2	4c	0.27 (1)	0.75	0.51 (1)	16(1)	2.20
Ca/Cd(2)	0.2/0.8	4b	0.50	0.50	0	26(1)	2.20
Ge(1)	1	4c	0.59 (1)	0.75	0.41 (1)	17(1)	4.03
S (1)	1	4c	0.44 (1)	0.75	0.25 (2)	20(1)	2.30
S(2)	1	8d	0.66 (1)	0.97 (1)	0.25 (1)	21(1)	2.06
S(3)	1	4c	0.59(1)	0.75	0.76 (2)	21(1)	2.11

Table S5. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for CaCdGeS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

Table S6. Anisotropic displacement parameters (Å $^2 \times 10^3$) for BaZnGeS4. Theanisotropicdisplacementfactorexponenttakestheform:- $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ba(1)	11(1)	14(1)	18(1)	0	0	0(1)
Ba(2)	12(1)	14(1)	17(1)	0	0	0(1)
Ba(3)	12(1)	14(1)	18(1)	0(1)	-1(1)	0(1)
Zn(1)	14(1)	23(1)	13(1)	0(1)	2(1)	0(1)
Zn(2)	15(1)	22(1)	13(1)	0(1)	3(1)	0(1)
Ge(1)	10(1)	13(1)	10(1)	0(1)	0(1)	0(1)
Ge(2)	10(1)	13(1)	10(1)	0(1)	0(1)	0(1)
S (1)	16(1)	14(1)	14(1)	1(1)	-2(1)	1(1)
S(2)	15(1)	14(1)	13(1)	-2(1)	-2(1)	0(1)
S(3)	10(1)	21(1)	12(1)	0(1)	0(1)	-1(1)
S(4)	11(1)	20(1)	13(1)	0(1)	3(1)	-1(1)
S(5)	14(1)	19(1)	10(1)	0(1)	1(1)	0(1)
S(6)	12(1)	14(1)	16(1)	1(1)	0(1)	-1(1)
S(7)	12(1)	14(1)	16(1)	-1(1)	0(1)	1(1)
S(8)	11(1)	17(1)	10(1)	0(1)	0(1)	-1(1)

Table S7. Anisotropic displacement parameters (Å $^2 \times 10^3$) for Mg_{0.6}Cd_{1.4}GeS₄. Theanisotropicdisplacementfactorexponenttakestheform:- $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mg/Cd(1)	17(1)	22(1)	18(1)	0	1(1)	0
Mg/Cd(2)	28(1)	22(1)	22(1)	-5(1)	2(1)	4(1)
Ge(1)	11(1)	12(1)	7(1)	0	0(1)	0
S(1)	10(1)	16(1)	13(1)	0	0(1)	0
S(2)	14(1)	12(1)	12(1)	1(1)	-1(1)	-3(1)
S(3)	14(1)	16(1)	7(1)	0	0(1)	0

Table S8. Anisotropic displacement parameters (Å $^2 \times 10^3$) for CaCdGeS4. Theanisotropicdisplacementfactorexponenttakestheform:- $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ca/Cd(1)	16(1)	18(1)	15(1)	0	-2(1)	0
Ca/Cd(2)	30(1)	23(1)	25(1)	-10(1)	-7(1)	-1(1)
Ge(1)	18(1)	19(1)	13(1)	0	-1(1)	0
S(1)	17(1)	24(1)	19(1)	0	0(1)	0
S(2)	24(1)	20(1)	18(1)	-1(1)	0(1)	-4(1)
S(3)	26(1)	24(1)	12(1)	0	-1(1)	0

Atoms	Distance (Å)	Atoms	Distance (Å)
Ba(1)-S(1)#1	3.2125(15)	Ba(3)-S(5)#8	3.2515(15)
Ba(1)-S(1)	3.2126(15)	Ba(3)-S(6)	3.1880(15)
Ba(1)-S(2)#2	3.2188(14)	Ba(3)-S(7)#2	3.2257(14)
Ba(1)-S(2)#3	3.2188(14)	Ba(3)-S(8)#9	3.2285(14)
Ba(1)-S(5)#3	3.2475(15)	Zn(1)-S(1)	2.3901(17)
Ba(1)-S(5)#2	3.2475(15)	Zn(1)-S(2)	2.3995(17)
Ba(1)-S(8)#4	3.2374(15)	Zn(1)-S(3)	2.2913(16)
Ba(1)-S(8)#5	3.2374(15)	Zn(1)-S(5)#2	2.3896(14)
Ba(2)-S(3)#6	3.2240(15)	Zn(2)-S(4)#11	2.4015(13)
Ba(2)-S(3)	3.2240(15)	Zn(2)-S(6)	2.3904(16)
Ba(2)-S(4)	3.2561(15)	Zn(2)-S(7)	2.4034(16)
Ba(2)-S(4)#6	3.2561(15)	Zn(2)-S(8)	2.2885(17)
Ba(2)-S(6)#2	3.2244(14)	Ge(1)-S(3)	2.2253(12)
Ba(2)-S(6)#7	3.2244(14)	Ge(1)-S(5)	2.1867(16)
Ba(2)-S(7)#6	3.2051(15)	Ge(1)-S(6)	2.2189(15)
Ba(2)-S(7)	3.2051(15)	Ge(1)-S(7)	2.2188(15)
Ba(3)-S(1)#8	3.2184(15)	Ge(2)-S(1)#10	2.2218(16)
Ba(3)-S(2)#3	3.2287(15)	Ge(2)-S(2)#10	2.2214(16)
Ba(3)-S(3)	3.2345(16)	Ge(2)-S(4)	2.1954(15)
Ba(3)-S(4)	3.2466(15)	Ge(2)-S(8)	2.2240(13)

Table S9. Selected bond lengths (Å) of BaZnGeS₄.

#1 -x+1/2,-y+3/2,z; #2 x-1/4,-y+5/4,z-1/4; #3 -x+3/4,y+1/4,z-1/4; #4 x-1/2,y,z+1/2; #5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2; #9 -x+5/4,y+1/4,z+1/4; #10 x+1/4,-y+5/4,z-3/4; #11 x+1/4,-y+5/4,z+1/4

Atoms	Angle (°)	Atoms	Angle (°)
S(1)#1-Ba(1)-S(1)	115.90(7)	S(7)-Ba(2)-S(6)#2	142.81(3)
S(1)-Ba(1)-S(2)#2	142.41(3)	S(7)#6-Ba(2)-S(7)	116.38(6)
S(1)-Ba(1)-S(2)#3	69.65(4)	S(1)#8-Ba(3)-S(2)#3	141.88(3)
S(1)#1-Ba(1)-S(2)#2	69.65(4)	S(1)#8-Ba(3)-S(3)	130.71(4)
S(1)#1-Ba(1)-S(2)#3	142.41(3)	S(1)#8-Ba(3)-S(4)	83.86(4)
S(1)#1-Ba(1)-S(5)#3	72.61(4)	S(1)#8-Ba(3)-S(5)#8	79.60(4)
S(1)-Ba(1)-S(5)#2	72.61(4)	S(1)#8-Ba(3)-S(7)#2	129.32(5)
S(1)#1-Ba(1)-S(5)#2	138.49(3)	S(1)#8-Ba(3)-S(8)#9	67.61(3)
S(1)-Ba(1)-S(5)#3	138.49(3)	S(2)#3-Ba(3)-S(3)	81.32(4)
S(1)-Ba(1)-S(8)#4	77.34(4)	S(2)#3-Ba(3)-S(4)	133.21(4)
S(1)-Ba(1)-S(8)#5	77.28(4)	S(2)#3-Ba(3)-S(5)#8	72.42(4)
S(1)#1-Ba(1)-S(8)#5	77.34(4)	S(3)-Ba(3)-S(4)	66.28(3)
S(1)#1-Ba(1)-S(8)#4	77.28(4)	S(3)-Ba(3)-S(5)#8	149.52(3)
S(2)#2-Ba(1)-S(2)#3	130.47(7)	S(4)-Ba(3)-S(5)#8	122.87(4)
S(2)#2-Ba(1)-S(5)#2	80.46(4)	S(6)-Ba(3)-S(1)#8	70.78(5)
S(2)#2-Ba(1)-S(5)#3	79.08(4)	S(6)-Ba(3)-S(2)#3	116.05(5)
S(2)#3-Ba(1)-S(5)#3	80.46(4)	S(6)-Ba(3)-S(3)	67.18(3)
S(2)#3-Ba(1)-S(5)#2	79.08(4)	S(6)-Ba(3)-S(4)	82.26(4)
S(2)#2-Ba(1)-S(8)#5	136.81(3)	S(6)-Ba(3)-S(5)#8	138.84(4)
S(2)#3-Ba(1)-S(8)#5	67.52(3)	S(6)-Ba(3)-S(7)#2	143.33(3)
S(2)#3-Ba(1)-S(8)#4	136.81(3)	S(6)-Ba(3)-S(8)#9	77.60(4)
S(2)#2-Ba(1)-S(8)#4	67.52(3)	S(7)#2-Ba(3)-S(2)#3	69.29(5)
S(5)#2-Ba(1)-S(5)#3	129.83(6)	S(7)#2-Ba(3)-S(3)	78.65(3)
S(8)#5-Ba(1)-S(5)#2	141.05(2)	S(7)#2-Ba(3)-S(4)	71.83(3)
S(8)#4-Ba(1)-S(5)#2	64.74(3)	S(7)#2-Ba(3)-S(5)#8	77.80(4)
S(8)#5-Ba(1)-S(5)#3	64.74(3)	S(7)#2-Ba(3)-S(8)#9	135.70(3)
S(8)#4-Ba(1)-S(5)#3	141.05(2)	S(8)#9-Ba(3)-S(2)#3	77.16(3)

Table S10. Selected bond angles (°) of $BaZnGeS_4$.

S(8)#5-Ba(1)-S(8)#4	131.09(6)	S(8)#9-Ba(3)-S(3)	124.37(4)
S(3)#6-Ba(2)-S(3)	118.97(6)	S(8)#9-Ba(3)-S(4)	149.16(3)
S(3)-Ba(2)-S(4)#6	158.49(2)	S(8)#9-Ba(3)-S(5)#8	64.79(3)
S(3)#6-Ba(2)-S(4)#6	66.29(3)	S(1)-Zn(1)-S(2)	91.15(6)
S(3)-Ba(2)-S(4)	66.29(3)	S(3)-Zn(1)-S(1)	124.42(6)
S(3)#6-Ba(2)-S(4)	158.49(2)	S(3)-Zn(1)-S(2)	125.25(6)
S(3)#6-Ba(2)-S(6)#2	129.60(3)	S(3)-Zn(1)-S(5)#2	101.79(6)
S(3)#6-Ba(2)-S(6)#7	78.78(3)	S(5)#2-Zn(1)-S(1)	106.31(5)
S(3)-Ba(2)-S(6)#2	78.78(3)	S(5)#2-Zn(1)-S(2)	106.13(5)
S(3)-Ba(2)-S(6)#7	129.60(3)	S(4)#11-Zn(2)-S(7)	104.40(5)
S(4)-Ba(2)-S(4)#6	117.31(6)	S(6)-Zn(2)-S(4)#11	103.57(5)
S(6)#2-Ba(2)-S(4)#6	82.61(4)	S(6)-Zn(2)-S(7)	91.29(5)
S(6)#2-Ba(2)-S(4)	71.04(3)	S(8)-Zn(2)-S(4)#11	100.91(5)
S(6)#7-Ba(2)-S(4)#6	71.04(3)	S(8)-Zn(2)-S(6)	126.49(6)
S(6)#7-Ba(2)-S(4)	82.61(4)	S(8)-Zn(2)-S(7)	127.01(6)
S(6)#2-Ba(2)-S(6)#7	128.30(6)	S(5)-Ge(1)-S(3)	104.48(6)
S(7)-Ba(2)-S(3)#6	81.72(4)	S(5)-Ge(1)-S(6)	118.80(6)
S(7)-Ba(2)-S(3)	66.96(3)	S(5)-Ge(1)-S(7)	119.18(6)
S(7)#6-Ba(2)-S(3)	81.72(4)	S(6)-Ge(1)-S(3)	106.19(6)
S(7)#6-Ba(2)-S(3)#6	66.96(3)	S(7)-Ge(1)-S(3)	105.90(6)
S(7)#6-Ba(2)-S(4)	133.54(3)	S(7)-Ge(1)-S(6)	101.14(5)
S(7)#6-Ba(2)-S(4)#6	81.93(4)	S(1)#10-Ge(2)-S(8)	107.56(5)
S(7)-Ba(2)-S(4)	81.93(4)	S(2)#10-Ge(2)-S(1)#10	100.69(6)
S(7)-Ba(2)-S(4)#6	133.54(3)	S(2)#10-Ge(2)-S(8)	107.63(5)
S(7)#6-Ba(2)-S(6)#2	70.31(4)	S(4)-Ge(2)-S(1)#10	117.47(6)
S(7)-Ba(2)-S(6)#7	70.31(4)	S(4)-Ge(2)-S(2)#10	117.62(6)
S(7)#6-Ba(2)-S(6)#7	142.81(3)	S(4)-Ge(2)-S(8)	105.29(6)

#1 -x+1/2,-y+3/2,z; #2 x-1/4,-y+5/4,z-1/4; #3 -x+3/4,y+1/4,z-1/4; #4 x-1/2,y,z+1/2; #5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2; $\#9 \ \textbf{-x} + 5/4, \textbf{y} + 1/4, \textbf{z} + 1/4; \ \#10 \ \textbf{x} + 1/4, \textbf{-y} + 5/4, \textbf{z} \textbf{-} 3/4; \ \#11 \ \textbf{x} + 1/4, \textbf{-y} + 5/4, \textbf{z} \textbf{+} 1/4$

Atoms	Distance (Å)	Atoms	Distance (Å)
Mg/Cd(1)-S(1)	2.6078(12)	Mg/Cd(2)-S(2)	2.6465(8)
Mg/Cd(1)-S(2)	2.6528(8)	Mg/Cd(2)-S(2)#7	2.6465(8)
Mg/Cd(1)-S(2)#1	2.6528(8)	Mg/Cd(2)-S(3)#6	2.6581(7)
Mg/Cd(1)-S(2)#2	2.7450(9)	Mg/Cd(2)-S(3)#8	2.6581(7)
Mg/Cd(1)-S(2)#3	2.7450(9)	Ge(1)-S(1)#6	2.2334(12)
Mg/Cd(1)-S(3)#4	2.7290(12)	Ge(1)-S(2)	2.2265(9)
Mg/Cd(2)-S(1)#6	2.6002(7)	Ge(1)-S(2)#5	2.2265(8)
Mg/Cd(2)-S(1)#8	2.6002(7)	Ge(1)-S(3)	2.1793(11)

Table S11. Selected bond lengths (Å) of Mg_{0.6}Cd_{1.4}GeS₄.

#1 -x+1/2,-y+3/2,z; #2 x-1/4,-y+5/4,z-1/4; #3 -x+3/4,y+1/4,z-1/4; #4 x-1/2,y,z+1/2; #5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2

Atoms	Angle (°)	Atoms	Angle (°)
S(1)-Mg/Cd(1)-S(2)	95.49(2)	S(1)#6-Mg/Cd(2)-S(3)#6	93.24(2)
S(1)-Mg/CdCd(1)-S(2)#1	95.50(2)	S(1)#6-Mg/Cd(2)-S(3)#8	86.76(2)
S(1)-Mg/Cd(1)-S(2)#2	93.88(3)	S(1)#8-Mg/Cd(2)-S(2)	97.11(3)
S(1)-Mg/Cd(1)-S(2)#3	93.88(3)	S(1)#8-Mg/Cd(2)-S(2)#7	82.89(3)
S(1)-Mg/Cd(1)-S(3)#4	172.68(4)	S(1)#8-Mg/Cd(2)-S(3)#6	86.76(2)
S(2)-Mg/Cd(1)-S(2)#2	88.746(14)	S(1)#8-Mg/Cd(2)-S(3)#8	93.24(2)
S(2)-Mg/Cd(1)-S(2)#3	164.39(3)	S(2)-Mg/Cd(2)-S(2)#7	180.0
S(2)-Mg/Cd(1)-S(3)#4	89.06(2)	S(2)-Mg/Cd(2)-S(3)#6	96.40(3)
S(2)#1-Mg/Cd(1)-S(2)	102.72(4)	S(2)-Mg/Cd(2)-S(3)#8	83.60(3)
S(2)#1-Mg/Cd(1)-S(2)#2	164.39(3)	S(2)#7-Mg/Cd(2)-S(3)#6	83.60(3)
S(2)#1-Mg/Cd(1)-S(2)#3	88.745(14)	S(2)#7-Mg/Cd(2)-S(3)#8	96.40(3)
S(2)#1-Mg/Cd(1)-S(3)#4	89.06(2)	S(3)#6-Mg/Cd(2)-S(3)#8	180.00(4)
S(2)#2-Mg/Cd(1)-S(2)#3	78.18(4)	S(2)-Ge(1)-S(1)#6	102.29(3)
S(3)#4-Mg/Cd(1)-S(2)#2	80.47(3)	S(2)-Ge(1)-S(2)#5	102.03(4)
S(3)#4-Mg/Cd(1)-S(2)#3	80.47(3)	S(2)#5-Ge(1)-S(1)#6	102.29(3)
S(1)#6-Mg/Cd(2)-S(1)#8	180.00(4)	S(3)-Ge(1)-S(1)#6	116.20(5)
S(1)#6-Mg/Cd(2)-S(2)	82.89(3)	S(3)-Ge(1)-S(2)	115.93(3)
S(1)#6-Mg/Cd(2)-S(2)#7	97.11(3)	S(3)-Ge(1)-S(2)#5	115.93(3)

Table S12. Selected bond angles (°) of Mg_{0.6}Cd_{1.4}GeS₄.

#1 -x+1/2,-y+3/2,z; #2 x-1/4,-y+5/4,z-1/4; #3 -x+3/4,y+1/4,z-1/4; #4 x-1/2,y,z+1/2; #5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2

Atoms	Distance (Å)	Atoms	Distance (Å)
Ca/Cd(1)-S(1)	2.7396(12)	Ca/Cd(2)-S(2)#6	2.7035(7)
Ca/Cd(1)-S(2)#1	2.7686(8)	Ca/Cd(2)-S(2)#9	2.7035(7)
Ca/Cd(1)-S(2)#2	2.8187(9)	Ca/Cd(2)-S(3)#10	2.7674(8)
Ca/Cd(1)-S(2)#3	2.7686(8)	Ca/Cd(2)-S(3)#11	2.7674(8)
Ca/Cd(1)-S(2)#4	2.8187(9)	Ge(1)-S(1)	2.2344(11)
Ca/Cd(1)-S(3)#5	2.8403(12)	Ge(1)-S(2)	2.2252(8)
Ca/Cd(2)-S(1)	2.6516(7)	Ge(1)-S(2)#6	2.2252(8)
Ca/Cd(2)-S(1)#8	2.6516(7)	Ge(1)-S(3)	2.1772(12)

Table S13. Selected bond lengths (Å) of CaCdGeS₄.

#1 - x + 1/2, -y + 3/2, z; #2 - 1/4, -y + 5/4, z - 1/4; #3 - x + 3/4, y + 1/4, z - 1/4; #4 - 1/2, y, z + 1/2;

#5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2;

 $\#9 \ \textbf{-x} + 5/4, \textbf{y} + 1/4, \textbf{z} + 1/4; \ \#10 \ \textbf{x} + 1/4, \textbf{-y} + 5/4, \textbf{z} \textbf{-} 3/4; \ \#11 \ \textbf{x} + 1/4, \textbf{-y} + 5/4, \textbf{z} \textbf{+} 1/4$

Atoms	Angle (°)	Atoms	Angle (°)
S(1)-Ca/Cd(1)-S(2)#1	93.99(2)	S(1)#12-Ca/Cd(2)-S(2)#6	98.79(3)
S(1)-Ca/Cd(1)-S(2)#2	94.31(3)	S(1)#12-Ca/Cd(2)-S(2)#9	81.21(3)
S(1)-Ca/Cd(1)-S(2)#3	93.99(2)	S(1)-Ca/Cd(2)-S(3)#10	85.90(2)
S(1)-Ca/Cd(1)-S(2)#4	94.31(3)	S(1)-Ca/Cd(2)-S(3)#11	94.10(2)
S(1)-Ca/Cd(1)-S(3)#5	173.68(4)	S(1)#12-Ca/Cd(2)-S(3)#10	94.10(2)
S(2)#1-Ca/Cd(1)-S(2)#2	88.433(14)	S(1)#12-Ca/Cd(2)-S(3)#11	85.90(2)
S(2)#1-Ca/Cd(1)-S(2)#4	163.22(3)	S(2)#6-Ca/Cd(2)-S(2)#9	180.0
S(2)#2-Ca/Cd(1)-S(2)#4	76.42(3)	S(2)#6-Ca/Cd(2)-S(3)#10	84.13(3)
S(2)#3-Ca/Cd(1)-S(2)#1	105.50(4)	S(2)#6-Ca/Cd(2)-S(3)#11	95.87(3)
S(2)#3-Ca/Cd(1)-S(2)#2	163.22(3)	S(2)#9-Ca/Cd(2)-S(3)#10	95.87(3)
S(2)#3-Ca/Cd(1)-S(2)#4	88.433(14)	S(2)#9-Ca/Cd(2)-S(3)#11	84.13(3)
S(2)#1-Ca/Cd(1)-S(3)#5	89.83(2)	S(3)#11-Ca/Cd(2)-S(3)#10	180.0
S(2)#2-Ca/Cd(1)-S(3)#5	80.74(3)	S(2)-Ge(1)-S(1)	102.81(3)
S(2)#3-Ca/Cd(1)-S(3)#5	89.83(2)	S(2)#6-Ge(1)-S(1)	102.81(3)
S(2)#4-Ca/Cd(1)-S(3)#5	80.74(3)	S(2)#6-Ge(1)-S(2)	103.18(4)
S(1)-Ca/Cd(2)-S(1)#12	180.0	S(3)-Ge(1)-S(1)	115.59(4)
S(1)-Ca/Cd(2)-S(2)#6	81.21(3)	S(3)-Ge(1)-S(2)	115.32(3)
S(1)-Ca/Cd(2)-S(2)#9	98.79(3)	S(3)-Ge(1)-S(2)#6	115.32(3)

 Table S14.
 Selected bond angles (°) of CaCdGeS4.

#1 -x+1/2,-y+3/2,z; #2 x-1/4,-y+5/4,z-1/4; #3 -x+3/4,y+1/4,z-1/4; #4 x-1/2,y,z+1/2; #5 -x+1,-y+3/2,z+1/2; #6 -x+1,-y+1,z; #7 -x+5/4,y-1/4,z-1/4; #8 -x+1,-y+3/2,z-1/2; #9 -x+5/4,y+1/4,z+1/4; #10 x+1/4,-y+5/4,z-3/4; #11 x+1/4,-y+5/4,z+1/4

Figure S1. Crystal structure of CaCdGeS₄. (a-c) The coordination environments of Ge and M (Ca/Cd) atoms; (d-f) The formed $[GeS_4]_{\infty}$ pseudo-layers viewed along *b* and *c* directions, respectively; (g) The formed $[MS_6]_{\infty}$ framework; (h) The 3D crystal structure of CaCdGeS₄ along *c* direction.

Figure S2. Crystal structure of $Mg_{0.6}Cd_{1.4}GeS_4$. (a-c) The coordination environments of Ge and N (Mg/Cd) atoms; (d-f) The formed $[GeS_4]_{\infty}$ pseudo-layers viewed along *b* and *c* directions, respectively; (g) The formed $[NS_6]_{\infty}$ framework; (h) The 3D crystal structure of $Mg_{0.6}Cd_{1.4}GeS_4$ along *c* direction.

Figure S3. X-ray energy dispersive spectra of (a) $BaZnGeS_4$, (b) $Mg_{0.6}Cd_{1.4}GeS_4$, and (c) $CaCdGeS_4$.

Figure S4. Raman spectra of (a) $BaZnGeS_4$, (b) $Mg_{0.6}Cd_{1.4}GeS_4$, and (c) $CaCdGeS_4$.

Figure S5. Experimental and calculated XRD patterns for (a) $BaZnGeS_4$ and (b) $Mg_{0.6}Cd_{1.4}GeS_4$.

Figure S6. The experimental band gap of $Mg_{0.6}Cd_{1.4}GeS_4$.

Figure S7. The optical images showing the laser-induced damages in $BaZnGeS_4$ (a) and $AgGaS_2$ (b) under a pulsed YAG laser (1.06 μ m, 10 ns, 1 Hz).

Figure S8. Calculated refractive index dispersion curves (a) and birefringence curve (b) of BaZnGeS₄.

Reference

- Q. Liu, X. Liu, L. Wu and L. Chen, SrZnGeS₄: a dual-waveband nonlinear optical material with a transparency spanning UV/Vis and Far-IR spectral regions, *Angew. Chem. Int. Ed.*, 2022, **61**, e202205587.
- H. Yang, M. Ran, S. Zhou, X. Wu, H. Lin and Q. Zhu, Rational design via dualsite aliovalent substitution leads to an outstanding IR nonlinear optical material with well-balanced comprehensive properties, *Chem. Sci.*, 2022, 13, 10725-10733.
- Y. Li, Z. Chen, W. Yao, R. Tang and S. Guo, Heterovalent cations substitution to design asymmetric chalcogenides with promising nonlinear optical performances, *J. Mater. Chem. C*, 2021, 9, 8659-8665.
- Y. Zhang, D. Mei, Y. Yang, W. Cao, Y. Wu, J. Lu and Z. Lin, Rational design of a new chalcogenide with good infrared nonlinear optical performance: SrZnSnS₄, *J. Mater. Chem. C*, 2019, 7, 8556-8561.
- 5. C. L. Teske*, Darstellung und Kristallstruktur von Barium-Quecksilber-Thiostannat(IV), BaHgSnS₄, Z. Naturforsch., 1980, **35b**, 7-11
- G. Yangwu, F. Liang, Z. Li, W. Xing, Z. Lin, J. Yao, A. Mar and Y. Wu, AHgSnQ₄ (A = Sr, Ba; Q = S, Se): a series of Hg-Based infrared nonlinear-optical materials with strong second-harmonic-generation response and good phase matchability, *Inorg. Chem.*, 2019, **58**, 10390-10398.
- Y. Dou, Y. Chen, Z. Li, A. K. Iyer, B. Kang, W. Yin, J. Yao and A. Mar, SrCdGeS₄ and SrCdGeSe₄: promising infrared nonlinear optical materials with congruent-melting behavior, *Cryst. Growth Des.*, 2019, **19**, 1206-1214.
- Y. Lin, R. Ye, L. Yang, X. Jiang, B. Liu, H. Zeng and G. Guo, BaMnSnS₄ and BaCdGeS₄: infrared nonlinear optical sulfides containing highly distorted motifs with centers of moderate electronegativity, *Inorg. Chem. Front.*, 2019, 6, 2365-2368.
- N. Zhen, K. Wu, Y. Wang, Q. Li, W. Gao, D. Hou, Z. Yang, H. Jiang, Y. Dong and S. Pan, BaCdSnS₄ and Ba₃CdSn₂S₈: syntheses, structures, and non-linear optical and photoluminescence properties, *Dalton Trans.*, 2016, 45, 10681-10688.
- 10. Y. Lin, B. Liu, R. Ye, X. Jiang, L. Yang, H. Zeng and G. Guo, $SrCdSnQ_4$ (Q = S and Se): infrared nonlinear optical chalcogenides with mixed NLO-active and synergetic distorted motifs, *J. Mater. Chem. C*, 2019, **7**, 4459-4465.
- W. Yin, A. K. Iyer, C. Li, J. Yao and A. Mar, Noncentrosymmetric chalcogenides BaZnSiSe₄ and BaZnGeSe₄ featuring one-dimensional structures, *J. Alloys Compd.*, 2017, **708**, 414-421.
- 12. Y. Guo, F. Liang, W. Yin, Z. Li, X. Luo, Z. Lin, J. Yao, A. Mar and Y. Wu, BaHgGeSe₄ and SrHgGeSe₄: two new Hg-Based infrared nonlinear optical

materials, Chem. Mater., 2019, 31, 3034-3040.

- K. Wu, X. Su, Z. Yang and S. Pan, An investigation of new infrared nonlinear optical material: BaCdSnSe₄, and three new related centrosymmetric compounds: Ba₂SnSe₄, Mg₂GeSe₄, and Ba₂Ge₂S₆, *Dalton Trans.*, 2015, 44, 19856-19864.
- F. Yuan, C. Lin, Y. Huang, H. Zhang, A. Zhou, G. Chai and W. Cheng, BaCdGeSe₄: synthesis, structure and nonlinear optical properties, *J Solid State Chem.*, 2021, **302**, 122352.
- M. Ma, J. Dang, Y. Wu, X. Jiang and D. Mei, Optimal design of mid-infrared nonlinear-optical crystals: from SrZnSnSe₄ to SrZnSiSe₄, *Inorg. Chem.*, 2023, 62, 6549-6553.
- 16. A. Assoud, N. Soheilnia and H. Kleinke, Band gap tuning in new strontium seleno-stannates, *Chem. Mater.*, 2004, 16, 2215-2221.