Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Electronic Supplementary Information (ESI) for Inorganic Chemistry Frontiers

Supplementary Information

Constructing multi-interface engineering of NiS/Ni₃S₂/Fe₃O₄ nanoarchitectures for use

as high-efficiency electrocatalysts toward oxygen evolution reaction

Chengcheng Li, Anyang Bao, Cuizhen Yang, Guoqiang Liu, Xiang Chen, Mengyue Li,

Yuwen Cheng, Dongming Liu*

School of Materials Science and Engineering, Anhui University of Technology, Maanshan,

Anhui 243002, China

Contents

1. Experimental sections

- 1.1 Synthesis of NP-Ni electrocatalyst
- 1.2 Synthesis of NP-Ni-S electrocatalyst

2. Figures

Fig. S1. Four-electron mechanism of OER on (a) Ni_3S_2 -NiS, (b) Fe₃O₄-NiS, and (c) Ni_3S_2 -Fe₃O₄ model. (d–f) Calculated free-energy diagram of OER intermediates at zero potential (U=0).

Fig. S2. Density of states of (a) Ni_3S_2 -NiS, (b) NiS-Fe₃O₄ and (c) Ni_3S_2 -Fe₃O₄. (d) The absolute valence electrons for Ni_3S_2 , Fe₃O₄, as well as Ni_3S_2 and Fe₃O₄ of Ni_3S_2 -Fe₃O₄. The inset represents the charge difference density of Ni_3S_2 -Fe₃O₄.

Fig. S3. (a-b) SEM images of NP-(Fe,Ni) at different magnifications. (c) EDX mapping images of Fe, Ni and O for NP-(Fe,Ni). (d) EDX spectrum of NP-(Fe,Ni).

- Fig. S4. SEM image of NP-(Fe,Ni)-S.
- Fig. S5. SEM images of NP-Ni-S.

Fig. S6. (a-b) N₂ adsorption/desorption isotherms and (c-d) pore size distribution plots of NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Fig. S7. (a) XRD pattern of NP-(Fe,Ni). (b) Raman spectrum of NP-(Fe,Ni).

Fig. S8. XRD patterns of NP-(Fe,Ni)-S-*x* with sulfurization times of 1, 3, 6, and 9 h. **Fig. S9.** Raman spectrum of NP-(Fe,Ni)-S.

Fig. S10. (a) XRD patterns of NP-Ni-S and NP-(Fe,Ni)-S.

Fig. S11. The XPS survey spectrum of NP-(Fe,Ni)-S.

Fig. S12. High-resolution XPS spectra of (a) Fe 2p and (b) Ni 2p for NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Fig. S13. OER LSV curves of pristine NP-(Fe,Ni)-S-1, NP-(Fe,Ni)-S-3, NP-(Fe,Ni)-S-6, NP-

(Fe,Ni)-S-9 in 1.0 M KOH electrolyte at a scan rate of 5 mV s⁻¹.

Fig. S14. The equivalent circuit used to fit the Nyquist plots.

Fig. S15. CV curves of NP-(Fe,Ni)-S, NP-(Fe,Ni), NP-Ni-S and NP-Ni at different scan rates

in the region of 0.2-0.3 V vs. RHE.

Fig. S16. Specific activity of NP-(Fe,Ni)-S, NP-Ni-S, NP-(Fe,Ni) and NP-Ni normalized by their corresponding ECSA.

Fig. S17. LSV curves before and after 3000 CV cycles of NP-(Fe,Ni)-S.

Fig. S18. XRD patterns of NP-(Fe,Ni)-S before and after OER test in 1.0 M KOH.

Fig. S19. High-resolution XPS spectra of S 2p for NP-(Fe,Ni)-S before and after OER test.

Fig. S20. XRD patterns of NP-Ni-S before and after OER test in 1.0 M KOH.

Fig. S21. SEM image of NP-Ni-S after OER test in 1.0 M KOH.

Fig. S22. High-resolution XPS spectra of (a) O 1s and (b) S 2p of NP-Ni-S before and after OER test in 1.0 M KOH.

Fig. S23. Raman spectrum of NP-Ni-S after OER test in 1.0 M KOH.

Table S1. Specific surface area and pore size of NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Table S2. Comparison of OER activity of NP-(Fe,Ni)-S in 1.0 M KOH with other advanced

 reported non-noble metal electrocatalysts.

1. Experimental sections

1.1 Synthesis of NP-Ni electrocatalyst

The NiAl₃ alloy precursor was prepared by magnetically levitated induction melting of Ni and Al strips with molar ratio of 1:3 under argon atmosphere. Then, the NiAl₃ ingots were ballmilled for 12 h under argon atmosphere. The nano-porous Ni (NP-Ni) was synthesized by a previous reported work via alkali-etching of the NiAl₃ powders under 10 wt% NaOH solution at 25 °C.

1.2 Synthesis of NP-Ni-S electrocatalyst

The NP-Ni-S was synthesized through a traditional hydrothermal method by employing NP-Ni (0.1 g) powder, thiourea (3 mmol) and deionized water (60 mL) to prepare homogeneous solution. The solution was placed into a 100 ml Teflon-lined stainless-steel autoclave before kept at 150 °C for 6 h in an oven. After cool-down to room temperature, the NP-Ni-S was collected and dried at 60 °C for 12 h after filtering and washing with deionized water for several times.

2. Figures

Fig. S1. Four-electron mechanism of OER on (a) Ni_3S_2 -NiS, (b) Fe₃O₄-NiS, and (c) Ni_3S_2 -Fe₃O₄ model. (d–f) Calculated free-energy diagram of OER intermediates at zero potential (U=0).

Fig. S2. Density of states of (a) Ni_3S_2 -NiS, (b) NiS-Fe₃O₄ and (c) Ni_3S_2 -Fe₃O₄. (d) The absolute valence electrons for Ni_3S_2 , Fe₃O₄, as well as Ni_3S_2 and Fe₃O₄ of Ni_3S_2 -Fe₃O₄. The inset represents the charge difference density of Ni_3S_2 -Fe₃O₄.

Fig. S3. (a-b) SEM images of NP-(Fe,Ni) at different magnifications. (c) EDX mapping images of Fe, Ni and O for NP-(Fe,Ni). (d) EDX spectrum of NP-(Fe,Ni).

Fig. S4. SEM image of NP-(Fe,Ni)-S.

Fig. S5. SEM images of NP-Ni-S.

Fig. S6. (a-b) N₂ adsorption/desorption isotherms and (c-d) pore size distribution plots of NP-

(Fe,Ni) and NP-(Fe,Ni)-S.

Fig. S7. (a) XRD pattern of NP-(Fe,Ni). (b) Raman spectrum of NP-(Fe,Ni).

Fig. S8. XRD patterns of NP-(Fe,Ni)-S-x with sulfurization times of 1, 3, 6, and 9 h.

Fig. S9. Raman spectrum of NP-(Fe,Ni)-S.

Fig. S10. (a) XRD patterns of NP-Ni-S and NP-(Fe,Ni)-S.

Fig. S11. The XPS survey spectrum of NP-(Fe,Ni)-S.

Fig. S12. High-resolution XPS spectra of (a) Fe 2p and (b) Ni 2p for NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Fig. S13. OER LSV curves of pristine NP-(Fe,Ni)-S-1, NP-(Fe,Ni)-S-3, NP-(Fe,Ni)-S-6, NP-

(Fe,Ni)-S-9 in 1.0 M KOH electrolyte at a scan rate of 5 mV s⁻¹.

Fig. S14. The equivalent circuit used to fit the Nyquist plots.

Fig. S15. CV curves of NP-(Fe,Ni)-S, NP-(Fe,Ni), NP-Ni-S and NP-Ni at different scan rates

in the region of 0.2-0.3 V vs. RHE.

Fig. S16. Specific activity of NP-(Fe,Ni)-S, NP-Ni-S, NP-(Fe,Ni) and NP-Ni normalized by their corresponding ECSA.

Fig. S17. LSV curves before and after 3000 CV cycles of NP-(Fe,Ni)-S.

Fig. S18. XRD patterns of NP-(Fe,Ni)-S before and after OER test in 1.0 M KOH.

Fig. S19. High-resolution XPS spectra of S 2p for NP-(Fe,Ni)-S before and after OER test.

Fig. S20. XRD patterns of NP-Ni-S before and after OER test in 1.0 M KOH.

Fig. S21. SEM image of NP-Ni-S after OER test in 1.0 M KOH.

Fig. S22. High-resolution XPS spectra of (a) O 1s and (b) S 2p of NP-Ni-S before and after OER test in 1.0 M KOH.

Fig. S23. Raman spectrum of NP-Ni-S after OER test in 1.0 M KOH.

Samples	Specific surface area (m ² g ⁻¹)	Pore size (nm)
NP-(Fe,Ni)	23.4	5.3
NP-(Fe,Ni)-S	21.3	8.3

Table S1. Specific surface area and pore size of NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Table S2. Comparison of OER activity of NP-(Fe,Ni)-S in 1.0 M KOH with other advanced

reported non-noble metal electrocatalysts.

Catalysts	Overpotential (mV) at 100 mA cm ⁻²	Ref.
NP-(Fe,Ni)-S	274	This work
Ni-Fe/NiMoN _x	292	1
NiMoN/NF-450	370	2
Ni/NiFeMoO _x /NF	289	3
Ni ₂ P-VP ₂ /NF	398	4
MoO _x /Ni ₃ S ₂ /NF	310	5
$Pd/NiFeO_x$	296	6
NiS/NiS ₂	416	7
ZnP@Ni ₂ P-NiSe ₂	326	8
Fe-Ni ₂ P@Cu _x S	390	9
NiCo ₂ S ₄	399	10
NiFe-LDH	302	11
Ni ₃ FeN/r-Go	320	12

References

- Y. Qiu, M. Sun, J. Cheng, J. Sun, D. Sun, L. Zhang, Bifunctional Ni-Fe/NiMoN_x nanosheets on Ni foam for high-efficiency and durable overall water splitting, *Catal. Commun.*, 2022, 164, 106426.
- Y. Wang, Y. Sun, F. Yan, C. Zhu, P. Gao, X. Zhang, Y. Chen, Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting, *J. Mater. Chem. A.*, 2018, 6, 8479-8487.
- 3 Y. Li, G. Zhang, W. Lu, F. Cao, Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting, *Adv. Sci.*, 2020, **7**, 1902034.
- 4 H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for highefficiency and stable overall water splitting, *Adv. Mater.*, 2019, **31**, 1901174.
- 5 Y. Wu, G. Li, Y. Liu, L. Yang, X. Lian, T. Asefa, X. Zou, Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni₃S₂-based electrocatalyst, *Adv. Funct. Mater.*, 2016, 26, 4839-4847.
- W. Zhang, X. Jiang, Z. Dong, J. Wang, N. Zhang, J. Liu, G. Xu, L. Wang. Porous
 Pd/NiFeO_x nanosheets enhance the pH-universal overall water splitting, *Adv. Funct. Mater.*, 2021, **31**, 2107181.
- 7 Q. Li, D. Wang, C. Han, X. Ma, Qi. Lu, Z. Xing, X. Yang, Construction of amorphous interface in an interwoven NiS/NiS₂ structure for enhanced overall water splitting, *J*.

Mater. Chem. A., 2018, 6, 8233-8237.

- 8 K. Chang, D. T. Tran, J. Wang, S. Prabhakaran, D.H. Kim, N.H. Kim, J.H. Lee, Atomic heterointerface engineering of Ni₂P-NiSe₂ nanosheets coupled ZnP-based arrays for high efficiency solar-assisted water splitting, *Adv. Funct. Mater.*, 2022, 2113224.
- D.T. Tran, H.T. Le, V.H. Hoa, N.H. Kim, J.H. Lee, Dual-coupling ultrasmall iron-Ni₂P into
 P-doped porous carbon sheets assembled Cu_xS nanobrush arrays for overall water splitting,
 Nano Energy, 2021, 84, 105861.
- 10 G. Janani, S. Yuvaraj, S. Surendran, Y. Chae, Y. Sim, S. Song, W. Park, M. Kim, U. Sim, Enhanced bifunctional electrocatalytic activity of Ni-Co bimetallic chalcogenides for efficient water-splitting application, *J. Alloys Compd.*, 2020, 846, 156389.
- X. Wang, Y. Tuo, Y. Zhou, D. Wang, S. Wang, J. Zhang, Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation, *Chem. Eng. J.*, 2021, 403, 126297.
- 12 Y. Gu, S. Chen, J. Ren, Y. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, Electronic structure tuning in Ni₃FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting, ACS Nano, 2018, **12**, 245-253.