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1. Experimental sections

1.1 Synthesis of NP-Ni electrocatalyst

The NiAl3 alloy precursor was prepared by magnetically levitated induction melting of Ni 

and Al strips with molar ratio of 1:3 under argon atmosphere. Then, the NiAl3 ingots were ball-

milled for 12 h under argon atmosphere. The nano-porous Ni (NP-Ni) was synthesized by a 

previous reported work via alkali-etching of the NiAl3 powders under 10 wt% NaOH solution 

at 25 ℃.

1.2 Synthesis of NP-Ni-S electrocatalyst

The NP-Ni-S was synthesized through a traditional hydrothermal method by employing NP-

Ni (0.1 g) powder, thiourea (3 mmol) and deionized water (60 mL) to prepare homogeneous 

solution. The solution was placed into a 100 ml Teflon-lined stainless-steel autoclave before 

kept at 150 ℃ for 6 h in an oven. After cool-down to room temperature, the NP-Ni-S was 

collected and dried at 60 ℃ for 12 h after filtering and washing with deionized water for several 

times. 
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valence electrons for Ni3S2, Fe3O4, as well as Ni3S2 and Fe3O4 of Ni3S2-Fe3O4. The inset 

represents the charge difference density of Ni3S2-Fe3O4.



Fig. S3. (a-b) SEM images of NP-(Fe,Ni) at different magnifications. (c) EDX mapping images 

of Fe, Ni and O for NP-(Fe,Ni). (d) EDX spectrum of NP-(Fe,Ni).
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Fig. S13. OER LSV curves of pristine NP-(Fe,Ni)-S-1, NP-(Fe,Ni)-S-3, NP-(Fe,Ni)-S-6, NP-

(Fe,Ni)-S-9 in 1.0 M KOH electrolyte at a scan rate of 5 mV s-1.

Fig. S14. The equivalent circuit used to fit the Nyquist plots.
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Fig. S16. Specific activity of NP-(Fe,Ni)-S, NP-Ni-S, NP-(Fe,Ni) and NP-Ni normalized by 

their corresponding ECSA.

Fig. S17. LSV curves before and after 3000 CV cycles of NP-(Fe,Ni)-S.

Fig. S18. XRD patterns of NP-(Fe,Ni)-S before and after OER test in 1.0 M KOH.



Fig. S19. High-resolution XPS spectra of S 2p for NP-(Fe,Ni)-S before and after OER test.

Fig. S20. XRD patterns of NP-Ni-S before and after OER test in 1.0 M KOH. 

Fig. S21. SEM image of NP-Ni-S after OER test in 1.0 M KOH.
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Table S1. Specific surface area and pore size of NP-(Fe,Ni) and NP-(Fe,Ni)-S.

Table S2. Comparison of OER activity of NP-(Fe,Ni)-S in 1.0 M KOH with other advanced 

reported non-noble metal electrocatalysts.

Samples Specific surface area (m2 g-1) Pore size (nm)

NP-(Fe,Ni) 23.4 5.3

NP-(Fe,Ni)-S 21.3 8.3

Catalysts  Overpotential (mV) at 100 mA cm-2 Ref.

NP-(Fe,Ni)-S 274 This work

Ni-Fe/NiMoNx 292 1

NiMoN/NF-450 370 2

Ni/NiFeMoOx/NF 289 3

Ni2P-VP2/NF 398 4

MoOx/Ni3S2/NF 310 5

Pd/NiFeOx 296 6

NiS/NiS2 416 7

ZnP@Ni2P-NiSe2 326 8

Fe-Ni2P@CuxS 390 9

NiCo2S4 399 10

NiFe-LDH 302 11

Ni3FeN/r-Go 320 12
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