Supporting Information

Supercritical relaxor phase boundary for ultrahigh electrostrictive properties

Qinghu Guo,^a Dongxu Li,^b Zhonghua Yao,^b Huajun Sun,^b Hua Hao,^{*a,b} Hanxing Liu^b and Shujun Zhang^{*c}

^a Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Material Science and Engineering, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

^c Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, New South Wales 2500, Australia.

* Corresponding author. E-mail: haohua@whut.edu.cn (H. Hao), shujun@uow.edu.au (S. Zhang).

Fig. S1 The temperature and frequency dependence of dielectric permittivity and dielectric loss for 3%Nd-PMN-*x*PT ceramics: (a) x = 0.25, (b) x = 0.26, (c) x = 0.27, (d) x = 0.28, (e) x = 0.29, (f) x = 0.30.

Fig. S2 The temperature and frequency dependence of dielectric permittivity and dielectric loss for 4%Nd-PMN-*x*PT ceramics: (a) x = 0.28, (b) x = 0.29, (c) x = 0.30, (d) x = 0.31, (e) x = 0.32, (f) x = 0.33.

Fig. S3 The temperature and frequency dependence of dielectric permittivity and dielectric loss for 5%Nd-PMN-*x*PT ceramics: (a) x = 0.30, (b) x = 0.31, (c) x = 0.32, (d) x = 0.33, (e) x = 0.34, (f) x = 0.35.

Fig. S4 The temperature dependence of dielectric permittivity and dielectric loss for unpoled (a) 4%Nd-PMN-0.32PT and (b) 4%Nd-PMN-0.33PT ceramic.

Fig. S5 The temperature stimulated depolarization current density J_{TSDC} and calculated remanent polarization P_{r} for 4%Nd-PMN-*x*PT ceramics.

The remanent polarization $P_{\rm r}$ was calculated by the formula:

$$P_r = \int_0^l \frac{J}{r} dT$$

where J, r, T are the depolarization current density, heating rate, and temperature, respectively.

Fig. S6 The polarization-electric field (*P*-*E*) hysteresis loops and the bipolar strain-electric field (*S*-*E*) curves for (a) 3%Nd-PMN-*x*PT ceramics and (b) 5%Nd-PMN-*x*PT ceramics.

Composition	$\mathcal{E}_{ m r}$	tan δ	$T_{\rm C}$	$T_{\rm nr}$	<i>d</i> ₃₃	$\Delta T_{\rm m}$	S _{max}
	(1kHz)	(%)	(°C)	(°C)	(pC/N)	(°C)	(%)
3%Nd-PMN-0.25PT	18230	9.0	46	-	-	12.1	0.178
3%Nd-PMN-0.26PT	15800	8.4	52	-	-	11.0	0.189
3%Nd-PMN-0.27PT	14020	7.6	58	-	-	10.6	0.195
3%Nd-PMN-0.28PT	12520	6.9	64	-	-	10.5	0.210
3%Nd-PMN-0.29PT	15510	6.7	71	37	820	9.3	0.195
3%Nd-PMN-0.30PT	14330	5.3	76	46	1270	8.9	0.179
4%Nd-PMN-0.28PT	20620	9.3	40	-	-	12.3	0.186
4%Nd-PMN-0.29PT	17630	8.7	46	-	-	11.6	0.194
4%Nd-PMN-0.30PT	15920	7.7	53	-	-	10.8	0.201
4%Nd-PMN-0.31PT	14050	7.2	58	-	-	10.1	0.217
4%Nd-PMN-0.32PT	11750	5.4	63	37	430	9.7	0.198
4%Nd-PMN-0.33PT	9740	2.3	70	50	890	9.2	0.188
5%Nd-PMN-0.30PT	23050	7.7	32		-	12.5	0.155
5%Nd-PMN-0.31PT	22370	8.8	36	-	-	11.5	0.165
5%Nd-PMN-0.32PT	20320	9.0	43	-	-	11.3	0.173
5%Nd-PMN-0.33PT	16430	8.0	51	-	-	10.8	0.187
5%Nd-PMN-0.34PT	9930	3.4	56	36	220	10.3	0.168
5%Nd-PMN-0.35PT	7350	1.8	61	46	450	9.5	0.163

Table S1 The dielectric, piezoelectric and strain properties of yNd-PMN-xPT ferroelectric ceramics