Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.

Centimeter-sized Novel Two-dimensional Organic Lead-Tin Mixed Iodide Single Crystals for Efficient Photodetector Applications

Xiaomei Jiang,^{‡,*a,b} Tiantian Li,^{‡,a} Qingzheng Kong,^a Ying Sun^a and Xutang Tao^{*b}

^a School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Jinan 250117, People's Republic of China

^b State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan 250100, People's Republic of China

[‡]These authors contributed equally.

*Corresponding authors.

E-mail addresses: jiangxiaomei@sdfmu.edu.cn, txt@sdu.edu.cn

Empirical Formula	(C ₈ H ₉ F ₃ N) ₂ PbI ₄	(C8H9F3N)2 Pb _{0.5} Sn _{0.5} I4	(C ₈ H ₉ F ₃ N) ₂ SnI ₄
Formula Weight/g·mol ⁻¹	1067.11	1022.86	978.61
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	$P2_1/c(14)$	$P2_1/c(14)$	$P2_1/c(14)$
	a=18.3980(8)Å	18.404(4)Å	18.3143(10)Å
	b=8.5193(3)Å	8.5313(16)Å	8.5322(4)Å
Unit Cell Dimensions	c=8.7052(3)Å	8.6674(17)Å	8.6166(5)Å
Dimensions	β=97.910(2)°	β=97.850(4) °	β=97.786(2)°
Volume/Å ³	1351.45(9)	1348.1(5)	1334.03
ρ _{calculated} ∕g·mol ⁻¹	2.622	2.520	2.436
Ζ	2	2	2
	-21≤h≤21	-21≤h≤21	-21≤h≤21
Index Ranges	-10≤k≤10	- 9≤k≤10	-10≤k≤10
	-10≤l≤10	- 8≤l≤10	-10 <u>≤</u> 1 <u>≤</u> 10
Completeness to θ = 25	100%	98.7%	100%
Data/Restraints/P arameters	2382/0/123	2345/142/17 1	2353/0/123
Goodness-of-Fit	1.062	1.086	1.021
Final R Indices [I > 2σ(I)]	$R_{obs}=0.0314$ $\omega R_{obs}=0.0654$	$R_{obs}=0.0361$ $\omega R_{obs}=0.107$ 8	$R_{obs}=0.0644$ $\omega R_{obs}=0.0630$
R Indices [all data]	$R_{all}=0.0439$ $\omega R_{all}=0.0702$	$R_{all}=0.0418$ $\omega R_{all}=0.113$ 1	$R_{all}=0.0363$ $\omega R_{all}=0.0572$
Largest Diff. Peak and Hole	-0.6 and 0.9 e·Å ⁻³	-0.9 and 1.2 e·Å ⁻³	-0.6 and 0.7 e·Å ⁻³
2Theta Range (Data Collection)	2.235 to 24.995	2.234 to 24.995	2.240 to 24.000
CCDC Number	2041929 [Reported]	2234210	2211886

Table S1. Crystal and Refinement Data for
 $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$ single crystal

	(CsHoF3N)2PbI4						
Atom	x/a	y/b	z/c	U [Å ²]			
Pb1	0.5	0.5	0.5	0.03854(14)			
I1	0.32778(3)	0.43545(7)	0.43828(7)	0.05944(19)			
I2	0.47029(3)	0.81034(6)	0.29930(6)	0.05504(18)			
C1	0.2848(5)	0.9509(12)	0.4259(11)	0.071(3)			
C2	0.2209(3)	0.9567(7)	0.5133(6)	0.057(2)			
C3	0.2022(3)	0.8229(5)	0.5903(7)	0.065(2)			
C4	0.1456(3)	0.8285(5)	0.6809(7)	0.069(3)			
C5	0.1078(3)	0.9679(7)	0.6945(7)	0.062(2)			
C6	0.1265(3)	1.1018(5)	0.6175(7)	0.071(3)			
C7	0.1831(3)	1.0962(6)	0.5269(7)	0.075(3)			
C8	0.0516(7)	0.9786(15)	0.7996(16)	0.090(3)			
F1	-0.0145(5)	0.9906(13)	0.7237(12)	0.175(4)			
F2	0.0439(5)	0.8528(12)	0.8795(11)	0.167(4)			
F3	0.0574(6)	1.0905(13)	0.8892(13)	0.221(7)			
N1	0.3503(4)	1.0236(8)	0.5193(9)	0.067(2)			
H1A	0.3908	0.9912	0.4836	0.081			
H1B	0.3521	0.9954	0.6182	0.081			
H1C	0.3472	1.1277	0.5118	0.081			
H1D	0.2731	1.0068	0.3286	0.085			
H1E	0.2954	0.8426	0.4026	0.085			
H3	0.2275	0.7296	0.5812	0.078			
H4	0.1331	0.7389	0.7324	0.083			
H6	0.1012	1.1951	0.6266	0.085			
H7	0.1956	1.1857	0.4754	0.09			
	(C ₈ H ₉ F ₃ N) ₂ Pb _{0.5} Sn _{0.5} I ₄						
Atom	x/a	y/b	z/c	U [Ų]			
Pb1	0	0.5	0	0.03453(18)			
Sn1	0	0.5	0	0.03453(18)			
I1	0.17133(3)	0.43646(6)	0.06123(6)	0.0535(2)			
I2	0.02869(3)	0.80555(5)	0.20441(5)	0.0491(2)			
C1	0.2149(5)	0.5481(12)	0.5771(11)	0.066(2)			
C2	0.2780(4)	0.5416(10)	0.4892(10)	0.0516(17)			
C3	0.2979(5)	0.6772(11)	0.4117(11)	0.064(2)			
C3B	0.4415(13)	0.519(4)	0.199(2)	0.081(5)			
C4	0.3563(6)	0.6698(11)	0.3197(11)	0.068(2)			
C5	0.3918(5)	0.5317(10)	0.3011(11)	0.0593(17)			
C6	0.3720(5)	0.3990(11)	0.3823(12)	0.066(2)			
C7	0.3168(5)	0.4050(10)	0.4734(11)	0.062(2)			

Table S2. Fractional atomic coordinates and equivalent isotropic Displacement Parameters for $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$.

C8	0.4490(7)	0.5260(16)	0.2081(15)	0.091(2)		
F1	0.5170(5)	0.5189(16)	0.2861(15)	0.109(3)		
F1B	0.5034(15)	0.438(4)	0.237(4)	0.089(7)		
F2	0.4586(6)	0.6562(13)	0.1270(13)	0.109(3)		
F2B	0.4204(17)	0.585(4)	0.062(3)	0.090(6)		
F3	0.4162(14)	0.463(4)	0.055(3)	0.085(6)		
F3B	0.4500(7)	0.3961(13)	0.1202(15)	0.114(3)		
N1	0.1477(4)	0.4747(8)	0.4858(9)	0.0605(18)		
H1A	0.15	0.4842	0.3843	0.073		
H1B	0.1077	0.5229	0.5089	0.073		
H1C	0.1458	0.3736	0.5103	0.073		
H1D	0.2045	0.6565	0.5999	0.079		
H1E	0.2269	0.4932	0.6752	0.079		
H3	0.273	0.771	0.4206	0.076		
H4	0.3704	0.7601	0.2716	0.082		
H6	0.3969	0.3052	0.3739	0.079		
H7	0.3051	0.3152	0.5258	0.075		
(C ₈ H ₉ F ₃ N) ₂ SnI ₄						
Atom	x/a	y/b	z/c	U [Å ²]		
Sn1	0.5	1	0.5	0.0373(2)		
I1	0.52773(3)	0.80061(5)	0.20851(6)	0.05400(18)		
I2	0.32929(3)	0.93706(6)	0.43917(6)	0.05812(19)		
C1	0.2865(5)	0.4514(10)	0.4174(10)	0.069(2)		
C2	0.2219(2)	0.4578(6)	0.5084(6)	0.055(2)		
C3	0.2030(3)	0.3238(5)	0.5856(6)	0.059(2)		
C4	0.1464(3)	0.3294(5)	0.6780(6)	0.067(2)		
C5	0.1089(3)	0.4689(7)	0.6933(6)	0.063(2)		
C6	0.1278(3)	0.6029(5)	0.6162(7)	0.076(3)		
C7	0.1844(3)	0.5973(5)	0.5237(6)	0.071(3)		
C8	0.0523(6)	0.4800(14)	0.7980(15)	0.091(3)		
F1	-0.0130(4)	0.4953(12)	0.7251(10)	0.181(4)		
F2	0.0596(5)	0.5883(12)	0.8938(12)	0.237(7)		
F3	0.0441(5)	0.3549(10)	0.8773(9)	0.164(3)		
N1	0.3529(3)	0.5230(7)	0.5119(8)	0.069(2)		
H1A	0.3933	0.4938	0.4725	0.082		
H1B	0.3558	0.4907	0.6108	0.082		
H1C	0.349	0.6269	0.5085	0.082		
H1D	0.2969	0.3433	0.3931	0.083		
H1E	0.2748	0.5079	0.3195	0.083		
H3	0.2281	0.2305	0.5753	0.071		
H4	0.1337	0.2397	0.7297	0.08		
H6	0.1027	0.6962	0.6264	0.091		

H7	0.1971	0.687	0.472	21	0.085		
Table	Table S3. Bond lengths of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$.						
(C ₈ H ₉ F ₃ N) ₂ PbI ₄ (C ₈ H ₉ F ₃ N) ₂ SnI ₄					2SnI4		
Atoms	d		Atoms d		d		
Pb1—I2	3.1747(5) 5	Sn1—I1 ⁱ 3.1315(5)		3.1315(5)		
Pb1—I2 ⁱ	3.1765(5) S	n1—I1 ⁱⁱ		3.1332(5)		
Pb1—I2 ⁱⁱ	3.1747(5) 5	Sn1—I1		3.1315(5)		
Pb1—I2 ⁱⁱⁱ	3.1765(5) S	n1—I1 ⁱⁱⁱ		3.1332(5)		
Pb1—I1 ⁱⁱ	3.1878(6) 9	Sn1—I2		3.1454(6)		
Pb1—I1	3.1878(6) 2	n1—I2 ⁱ		3.1454(6)		
I2—Pb1 ^{iv}	3.1765(5) I	-Sn1 ^{iv}		3.1332(5)		
N1—C1	1.4924(11	4) 1	V1—C1		1.4989(101)		
C1—C2	1.4865(11	5)	F3—C8		1.2871(149)		
F3—C8	1.2271(17	3)	C2—C7		1.3893(67)		
F1—C8	1.3057(15	2) (С2—С3		1.3899(70)		
F2—C8	1.2960(16	7) (C2—C1		1.5063(105)		
C6—C5	1.3901(79) (С7—С6		1.3914(83)		
C6—C7	1.3909(87	7) (C6—C5		1.3895(77)		
C5—C4	1.3902(75	5) (C5—C4		1.3893(75)		
C5—C8	1.4747(15	5) (C5—C8		1.4665(139)		
C4—C3	1.3909(87	7) (C4—C3		1.3908(81)		
C3—C2	1.3894(77	7)]	F1—C8		1.2800(129)		
C2—C7	1.3902(79)	F2—C8		1.2342(160)		
(C ₈ H ₉ F ₃ N) ₂ Pb _{0.5} Sn _{0.5} I ₄							
Atoms	d		Atoms d		d		
Pb1 Sn1—I2 ⁱ	3.1555	(6)	C4—C3		1.425(15)		
Pb1 Sn1—I2 ⁱⁱ	3.1566	(6)	C5—C6		1.406(12)		
Pb1 Sn1—I2	3.1556	(6)	C5—C3B		1.359(15)		
Pb1 Sn1—I2 ⁱⁱⁱ	3.1566	(6)	С5—С8		1.411(12)		
Pb1 Sn1—I1	3.1719	(8)	C7—C6		1.371(13)		
Pb1 Sn1—I3 ⁱ	3.1720	(8) Pb0	Pb01 Sn01—I002 ⁱⁱ		3.1566(6)		
I2—Pb1 Sn1 ^{iv}	3.1566	(6) Pb0	Pb01 Sn01—I002 ⁱ		3.1555(6)		
I2—Pb1 Sn1 ^{iv}	3.1566	(6) Pb0	Pb01 Sn01—I002 ⁱⁱⁱ		3.1566(6)		
I2—Pb1 Sn1	3.1556	(6) Pb0	Pb01 Sn01—I003 ⁱ		3.1720(8)		
I1—Pb1 Sn1	3.1719	(8)	F1B—C3B		1.329(15)		
N1—C1	1.509(1	1)	F2B—C3B		1.333(15)		
C2—C7	1.383(1	1.383(12) C3B—F4B 1.3		1.363(16)			
C2—C3	1.412(1	1.412(13) C3A—F4A 1.34		1.346(12)			
C2—C1	1.474(1	2)	C3A—F2A		1.340(12)		
C4—C5	1.368(1	4)	C3A—F1A	—F1A 1.339(12)			
(i) -x, 1-y, -z; (ii) x, 1.5-y, -0.5+z; (iii) -x, -0.5+y, 0.5-z; (iv) -x, 0.5+y, 0.5-z.							

(C ₈ H ₉ F ₃ N) ₂ PbI ₄		(C ₈ H ₉ F ₃ N) ₂ SnI ₄			
Atoms	Ang	le	Atoms	А	ngle
I2—Pb1—I2 ⁱⁱ	180.0	00	I1 ⁱ —Sn1—I1	18	0.000
I2 ⁱⁱ —Pb1—I2 ⁱ	89.528	(13)	I1—Sn1—I1 ⁱⁱ	90.9	023(12)
I2—Pb1—I2 ⁱ	90.472	(13)	I1 ⁱ —Sn1—I1 ⁱⁱ	89.0	077(12)
I2—Pb1—I2 ⁱⁱⁱ	89.528	(13)	I1 ⁱ —Sn1—I1 ⁱⁱⁱ	90.9	023(12)
I2 ⁱⁱ —Pb1—I2 ⁱⁱⁱ	90.472	(13)	I1—Sn1—I1 ⁱⁱⁱ	89.0	077(12)
I2 ⁱⁱⁱ —Pb1—I2 ⁱ	180.0	00	I1 ⁱⁱⁱ —Sn1—I1 ⁱⁱ	180.	000(12)
I2 ⁱⁱⁱ —Pb1—I1	86.948	(15)	I1 ⁱⁱ —Sn1—I2	87.9	937(14)
I2—Pb1—I1	87.653	(15)	I1—Sn1—I2	92.2	242(14)
I2 ⁱ —Pb1—I1 ⁱⁱ	86.948	(15)	I1 ⁱ —Sn1—I2	87.7	/58(14)
I2 ⁱⁱ —Pb1—I1 ⁱⁱ	87.653	(15)	I1 ⁱⁱⁱ —Sn1—I2 ⁱ	87.9	937(14)
I2 ⁱⁱ —Pb1—I1	92.347	(15)	I1 ⁱⁱⁱ —Sn1—I2	92.0	063(14)
I2 ⁱⁱⁱ —Pb1—I1 ⁱⁱ	93.052	(15)	I1 ⁱⁱ —Sn1—I2 ⁱ	92.0	063(14)
I2—Pb1—I1 ⁱⁱ	92.347	(15)	$I1^{i}$ —Sn1—I2 ⁱ	92.2	242(14)
I2 ⁱ —Pb1—I1	93.052	(15)	I1—Sn1—I2 ⁱ	87.7	758(14)
I1 ⁱⁱ —Pb1—I1	180.0	00	I2 ⁱ —Sn1—I2	180.000	
Pb1—I2—Pb1 ^{iv}	147.035(18)		Sn1—I1—Sn1 ^{iv} 150.8		849(16)
C2—C1—N1	110.094(689)		C7—C2—C3 120.0		062(443)
C5—C6—C7	119.970(503)		C7—C2—C1	120.9	009(491)
C6—C5—C8	119.314(691)		C3—C2—C1	118.9	008(494)
C4—C5—C6	120.035	(496)	C6—C7—C2	120.0	000(445)
C4—C5—C8	120.486	(681)	C7—C6—C5	119.9	022(482)
C3—C4—C5	119.961	(482)	C6—C5—C8	118.9	021(642)
C4—C3—C2	120.022	(489)	C4—C5—C6	120.0	079(493)
C3—C2—C1	119.041	(578)	C4—C5—C8 120.889(6		889(635)
C7—C2—C1	120.807	(586)	C3—C4—C5	120.0	007(470)
C7—C2—C3	120.017	(506)	C4—C3—C2	119.9	932(447)
C2—C7—C6	119.995	(496)	N1—C1—C2	109.821(631)	
F3—C8—F1	104.732((1186)	F3—C8—C5 114.5		86(947)
F3—C8—F2	107.920(1162)	F1—C8—F3 100.17		75(1009)
F3—C8—C5	115.805((1125)	F1—C8—C5 113.3		327(878)
F1—C8—C5	112.001(1009)		F2—C8—F3 106.00		03(1055)
F2—C8—F1	99.982(1095)		F2—C8—C5 115.992		92(1018)
F2—C8—C5	114.809((1047)	F2—C8—F1 105.143(10		43(1061)
(i) 1-x, 2	2-y, 1-z; (ii) 1-x,	0.5+y, 0.5-z; (ii	i) x, 1.5-y, 0.5+z; (iv)	1-x, -0.5+y, ().5-z.
		(C8H9F3N)2	Pb _{0.5} Sn _{0.5} I ₄		
Ator	ns	Angle	Atoms		Angle
I2 ⁱ —Pb1 S	Sn1—I2	180.000	C4—C5–	-C6	118.2(8)
I2—Pb1 Si	n1—I2 ⁱⁱⁱ	90.696(14)	00.696(14) C4—C5—C8		120.2(9)

Table S4. Bond angles of (C₈H₉F₃N)₂Pb_{1-x}Sn_xI₄(x=0,0.5,1).

I2 ⁱ —Pb1 Sn1—I2 ⁱⁱⁱ	89.304(15)	C6—C5—C8	121.5(9)		
I2 ⁱ —Pb1 Sn1—I2 ⁱⁱ	90.696(15)	C3B—C5—C4	121.4(16)		
I2—Pb1 Sn1—I2 ⁱⁱ	89.304(14)	C3B—C5—C6	120.3(17)		
I2 ⁱⁱ —Pb1 Sn1—I2 ⁱⁱⁱ	180.000(19)	C6—C7—C2	121.4(8)		
I2 ⁱⁱ —Pb1 Sn1—I1 ⁱ	92.696(15)	C2—C3—C4	119.6(9)		
I2 ⁱ —Pb1 Sn1—I1 ⁱ	87.761(14)	C7—C6—C5	121.4(8)		
I2 ⁱⁱⁱ —Pb1 Sn1—I1	92.696(15)	C5—C3B—F3	117(2)		
I2—Pb1 Sn1—I1	87.760(14)	F2B—C3B—C5	114.1(18)		
I2—Pb1 Sn1—I1 ⁱ	92.240(14)	F2B—C3B—F1B	125.(2)		
I2 ⁱⁱ —Pb1 Sn1—I1	87.304(15)	F2B—C3B—F3	45.(2)		
I2 ⁱ —Pb1 Sn1—I1	92.238(14)	F1B—C3B—C5	120.9(19)		
I2 ⁱⁱⁱ —Pb1 Sn1—I1 ⁱ	87.304(15)	F1B—C3B—F3	102(3)		
I1—Pb1 Sn1—I1 ⁱ	180.000	F3B—C8—C5	114.9(10)		
Pb1 Sn1—I2—Pb1 Sn1 ^{iv}	148.884(18)	F1—C8—C5	115.5(11)		
C2—C1—N1	111.1(7)	F1—C8—F3B	99.4(11)		
C7—C2—C3	118.2(8)	F2—C8—C5	115.7(11)		
C7—C2—C1	122.5(8)	F2—C8—F3B	111.9(12)		
C3—C2—C1	119.3(9)	F2—C8—F1	96.9(11)		
C5—C4—C3	120.9(9)				
(i) 1-x, 2-y, 1-z; (ii) 1-x, 0.5+y, 0.5-z; (iii) x, 1.5-y, 0.5+z; (iv) 1-x, -0.5+y, 0.5-z.					

Fig. S1. High-resolution XPS spectra of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$ single crystal. (a)-(c) $(C_8H_9F_3N)_2PbI_4$, (d-f) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$, and (h-g) $(C_8H_9F_3N)_2SnI_4$.

Fig. S2. SEM-EDS results of (C₈H₉F₃N)₂Pb_{0.5}Sn_{0.5}I₄ single crystal.

Fig. S3. Distortion Index (D), Bond Angle Variance (σ^2), and bandgap of (C₈H₉F₃N)₂Pb_{1-x}Sn_xI₄(x=0,0.5,1).

$(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1).$						
	(C ₈ H ₉ F ₃ N) ₂ PbI ₄	(C ₈ H ₉ F ₃ N) ₂ Pb _{0.5} Sn _{0.5} I ₄	(C ₈ H ₉ F ₃ N) ₂ SnI ₄			
Equatorial I-M-I angle (deg)	89.528	90.696	90.923			
	90.472	89.304	89.077			
	86.948	87.761	87.937			
Axial I-M-I angle	87.653	87.305	92.242			
(deg)	92.347	92.239	87.758			
	93.052	92.695	92.063			
M-I-M angle (deg)	147.035	150.849	148.884			
D	0.0017	0.0022	0.0018			
σ^2	5.47	4.64	3.68			
Band gap (eV)	2.39	1.96	2.0			
Table S6. Water contact angle of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1).$						
Perovskite Water contact angle (deg)						
Cs ₂ AgB	BiBr ₆ /SnO ₂ /ZnO[1]		15			
Cs_2A	gBiBr ₆ /ZnO[1]		48			
31	D MAPbI ₃ [2]		38.88			
FAPbI ₃ [3]			46.9			
(iBA) ₂ PbI ₄ [4]			46.2			
iBA(DMPDA) _{0.5} PbI ₄ [4]			50.7			
Cs ₂ AgBiBr ₆ [5]			50.2			
(FAPbI ₃)	0.95(MAPbBr3)0.05[6]		54.6			
$(C_8H_9F_3)$	N)2PbI4 (This work)		58.25			
(C ₈ H ₉ F ₃ N) ₂ I	Pb _{0.5} Sn _{0.5} I ₄ (This wor	k)	60.25			

 $(C_8H_9F_3N)_2SnI_4$ (This work)

Table S5. Distortion index (D), bond angle variance (σ^2), and bandgap of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$.

50.00

Fig. S4. PLQY results of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$. (a) $(C_8H_9F_3N)_2PbI_4$, (b) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$, and (c) $(C_8H_9F_3N)_2SnI_4$.

Fig. S5. Current-voltage curves and trap density at 298 K. Characteristic *I-V* curves with two different regimes for (a) $(C_8H_9F_3N)_2PbI_4$ and three different regimes for (b) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$ and (c) $(C_8H_9F_3N)_2SnI_4$. A linear Ohmic regime $(I \propto V, \text{ red line})$ is followed by the trap-filled regime (TFL), marked by a steep increase in current $(I \propto V^n \text{ (n>3)})$. The orange line denotes the trap-free Child's regime $(I \propto V^2)$.

Materials	Light intensity (µW cm ⁻²)	On/off current ratio	R (A W ⁻¹)	D* (Jones)
PEA ₂ SnI ₄ film (30% SnF ₂)[7]	2000	/	207.5	2.53×10 ¹³
FASnI ₃ Film[8]	0.064	/	10 ⁵	1.9×10 ¹²
TBASnCl ₃ QDs[9]	360	67	0.0148	5.04×10 ¹⁰
TBASnCl ₃ (0.03 M SnF ₂) QDs[9]	360	238	0.0097	7.67×10 ¹⁰
MAPb _{0.5} Sn _{0.5} I ₃ thin films[10]	614.3	/	0.0016	3.08×10 ¹⁰
$(PEA)_2SnI_4/MoS_2[11]$	36 pw	10 ²	0.121	8.09×10 ⁹
(rGO/PEDOT:PSS)/(PEA) ₂ SnI ₄ [12]	56.9	/	16	1.92×10 ¹¹
TiO ₂ /CsSnI ₃ /P3HT[13]	/	/	0.257	1.5×10^{11}
$CsSnI_3[14]$	/	1.08	0.054	3.85×10 ⁵
$CH_{3}NH_{3}Pb_{0.7}Sn_{0.3}I_{3}[15]$	/	/	0.39	7×10 ¹²
(PEA) ₂ SnI ₄ microsheets[16]	195.8	10	3.29×10 ³	2.06 ×10 ¹¹
(C ₈ H ₉ F ₃ N) ₂ PbI ₄ (This work)	7000	10 ³	0.0138	8.7×10^{10}
$(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$ (This work)	7000	48	0.6681	8.6×10 ¹⁰
(C ₈ H ₉ F ₃ N) ₂ SnI ₄ (This work)	7000	18	0.0323	4.7×10 ⁹

Table S7. The performances of Sn-containing perovskite-basedphotodetectors.

Fig. S6. Relationship of responsivity (R) and detectivity (D^{*}) with light power density at 10 V. (a) $(C_8H_9F_3N)_2PbI_4$, (b) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$, and (c) $(C_8H_9F_3N)_2SnI_4$.

Fig. S7. Temporal response of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$ single crystal-based photodetectors at the light intensity of 20 mWcm⁻² under a bias of 5V. (a) $(C_8H_9F_3N)_2PbI_4$, (b) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$, and (c) $(C_8H_9F_3N)_2SnI_4$.

Fig. S8. Stability test. (a)-(c) PXRD patterns of $(C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4(x=0,0.5,1)$ powders that storaged in ambient environment (T=24-30°C, RH=45-65%) for above 3 months.

Fig. S9. Stability test. I-V curves for (a) $(C_8H_9F_3N)_2PbI_4$, (b) $(C_8H_9F_3N)_2Pb_{0.5}Sn_{0.5}I_4$, and (c) $(C_8H_9F_3N)_2SnI_4$ with the device architecture of Au/BCP/C₆₀/($C_8H_9F_3N)_2Pb_{1-x}Sn_xI_4$ (x=0,0.5,1) single crystal/C₆₀/BCP/Au under the illumination of 405 nm laser (P=6.37 mW/mm²).

References

- W. Shen, U. Jung, Z. Xian, B. Jung and J. Park, Enhanced device performance of Cs₂AgBiBr₆ double perovskite photodetector by SnO₂/ZnO double electron transport layer, *J. Alloys Compd.*, 2022, **929**, 167329.
- [2] N. Guo, Z. Zhou, J. Ni, H.-K. Cai, J.-J. Zhang, Y.-Y. Sun and J. Li, Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite, *Acta Phys. Sin.*, 2020, 69198102.
- [3] R. Yu, G. Wu, R. Shi, Z. Ma, Q. Dang, Y. Qing, C. Zhang, K. Xu and Z. a. Tan, Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells, *Adv. Energy Mater.*, 2022, 13, 2203127.
- [4] Z. Lai, F. Wang, Y. Meng, X. Bu, X. Kang, Q. Quan, W. Wang, C. Liu, S. Yip and J. C. Ho, Superior performance and stability of 2D dion-jacobson halide perovskite photodetectors operated under harsh conditions without encapsulation, *Adv. Opt. Mater.*, 2021, 9, 2101523.
- [5] R. Li, H. Jiang, Y. Yao, H. Ye, X. Liu, S. Chen and J. Luo, Bulk single crystals of a narrow band gap three-dimensional hybrid perovskitoid enabling ultrastable photodetection, *Chem. Mater.*, 2022, 34, 10382-10389.
- [6] X. Wu, L. Zhang, Z. Xu, S. Olthof, X. Ren, Y. Liu, D. Yang, F. Gao and S. Liu, Efficient perovskite solar cells via surface passivation by a multifunctional small organic ionic compound, *J. Mater. Chem. A*, 2020, 8, 8313-8322.
- [7] K. R. Yun, T. J. Lee, S. K. Kim, J. H. Kim and T. Y. Seong, Fast and highly sensitive photodetectors based on Pb-free Sn-based perovskite with additive engineering, *Adv. Opt. Mater.*, 2022, **11**, 2201974.
- [8] C. K. Liu, Q. Tai, N. Wang, G. Tang, H. L. Loi and F. Yan, Sn-based perovskite for highly sensitive photodetectors, *Adv. Sci.*, 2019, 6, 1900751.

- [9] Z. Zhang, S. Yang, J. Hu, H. Peng, H. Li, P. Tang, Y. Jiang, L. Tang and B. Zou, One-pot synthesis of novel ligand-free tin(II)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors, *Nanoscale*, 2022, 14, 4170-4180.
- [10] J. Wu, Y. Zhang, S. Yang, Z. Chen and W. Zhu, Thin MAPb_{0.5}Sn_{0.5}I₃ Perovskite single vrystals for sensitive infrared light detection, *Front. Chem.*, 2021, 9, 821699.
- [11]C. Fang, H. Wang, Z. Shen, H. Shen, S. Wang, J. Ma, J. Wang, H. Luo and D. Li, High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS₂ heterostructures, ACS Appl. Mater. Interfaces, 2019, 11, 8419-8427.
- [12]L. Qian, Y. Sun, M. Wu, C. Li, D. Xie, L. Ding and G. Shi, A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device, *Nanoscale*, 2018, **10**, 6837-6843.
- [13]F. Cao, W. Tian, M. Wang, M. Wang and L. Li, Stability enhancement of lead-free CsSnI₃ perovskite photodetector with reductive ascorbic acid additive, *InfoMat*, 2020, 2, 577-584.
- [14] M. Han, J. Sun, M. Peng, N. Han, Z. Chen, D. Liu, Y. Guo, S. Zhao, C. Shan, T. Xu, X. Hao, W. Hu and Z.-x. Yang, Controllable Growth of Lead-Free All-inorganic perovskite nanowire array with fast and stable near-infrared photodetection, *J. Phys. Chem. C*, 2019, **123**, 17566-17573.
- [15] Y. Wang, D. Yang, D. Ma, D. H. Kim, T. Ahamad, S. M. Alshehri and A. Vadim, Organic-inorganic hybrid Sn-based perovskite photodetectors with high external quantum efficiencies and wide spectral responses from 300 to 1000 nm, *Science China Materials*, 2018, 62, 790-796.
- [16]L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li, D. Xie, C. Li and L. Ding, 2D perovskite microsheets for high-performance photodetectors, *J. Mater. Chem C*, 2019, 7, 5353-5358.