Supporting Information

Structural confinement toward suppressing concentration and thermal quenching

for improving near-infrared luminescence of Fe³⁺

Fangyi Zhao, Yuhe Shao, Zhen Song* and Quanlin Liu*

The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China. E-mail: <u>zsong@ustb.edu.cn</u>; <u>qlliu@ustb.edu.cn</u>

Fig. S1 XRD patterns of SGP:0.2Fe³⁺, yYb^{3+} (0.005 $\leq y \leq$ 0.20) and SGP:0.1Yb³⁺.

Compound	SGP:0.2Fe ³⁺	Sr ₉ Fe(PO ₄) ₇
Space Group	/12/a1	/12/a1
Symmetry	Monoclinic	Monoclinic
a (Å)	17.9674(9)	17.9749(8)
b (Å)	10.5955(5)	10.6087(5)
<i>c</i> (Å)	18.2615(8)	18.2795(8)
$\alpha = \gamma$ (°)	90.00	90.00
β (°)	132.778(2)	132.843(2)
V (ų)	2551.7(2)	2555.8(2)
R _p (%)	12.6	14.8
R _{wp} (%)	16.0	19.4
R _{exp} (%)	10.03	11.20
χ ²	2.54	3.01

Table S1. Main parameters of processing and refinement of SGP:0.2Fe³⁺ and Sr₉Fe(PO₄)₇ samples

Fig. S2 SEM images and element mapping images of SGP:0.2Fe³⁺ and SGP:0.2Fe³⁺,0.07Yb³⁺.

Fig. S3 Relationship between integrated PL intensity and Fe³⁺ concentration in SGP:xFe³⁺.

Fig. S4 (a) Spectra of SGP: $0.2Fe^{3+}$ and BaSO₄ to determine the IQE and EQE values. (b) Spectra of SGP: $0.2Fe^{3+}$, $0.07Yb^{3+}$ and BaSO₄ to determine the IQE and EQE values.

Fig. S5 Magnified (a) PLE spectrum measured at 77 K and (b) DR spectrum ranging from 450 to 800 nm of SGP:0.2Fe³⁺.

Fig. S6 (a) Luminescence decay curves of SGP: xFe^{3+} (0.05 $\le x \le 1$) excited by 330 nm and monitoring at 915 nm. (b) Relationship between lifetime values and Fe³⁺ concentration in SGP: xFe^{3+} .

Fig. S7 (a) Temperature-dependent PL spectra at 80-500 K, (b) dependence of PL intensity and PL peak wavelength on temperature, (c) activation energy plots using the Arrhenius equation, (d) fitting of the FWHM as a function of temperature for SGP:0.2Fe³⁺.

Fig. S8 Configurational coordinate diagram to illustrate thermal quenching behavior.

The temperature-dependence of PL intensity can be described by a modified Arrhenius equation:¹

$$I_{T} = \frac{I_{0}}{1 + A \exp(-\Delta E / kT)}$$
(S1)

where I_0 is the initial intensity, I_T is the intensity at a given temperature, A is a constant, k is the Boltzmann constant and ΔE is the activation energy for the thermal quenching.

The widening of FWHM can be explained qualitatively based on the following Equation:²

$$FWHM = 2.36 \times hv \times \sqrt{S} \times \sqrt{\coth(\frac{hv}{2kT})}$$
(S2)

where *hv*, *S*, *k* and *T* represent the energy of lattice vibration, Huang-Rhys parameter, Boltzmann constant and Kelvin temperature, respectively.

Fig. S9 (a) PLE spectra of SGP:0.2Fe³⁺, *y*Yb³⁺ ($0 \le y \le 0.20$) monitoring at 915 nm. (b) PLE spectra of SGP:0.2Fe³⁺, *y*Yb³⁺ ($0.005 \le y \le 0.20$) monitoring at 978 nm.

Fig. S10 (a) PLE spectrum of SGP:0.1Yb³⁺ monitoring at 978 nm. (b) PL spectra of SGP:0.1Yb³⁺ and SGP:0.2Fe³⁺,0.07Yb³⁺ excited by 365 nm.

The ET efficiency (η_{ET}) can be calculated by the attenuation of lifetime based on the following equation:³

$$\eta_{\rm ET} = 1 - \frac{\tau_{\rm Fe}}{\tau_{\rm Fe_0}} \tag{S3}$$

where $\tau_{\rm Fe}$ is the lifetime of Fe³⁺ in Yb³⁺-doped samples, and $\tau_{\rm Fe0}$ represents the lifetime of Fe³⁺ in Yb³⁺-free samples.

Fig. S11 PLE spectra of SGP:0.2Fe³⁺,0.07Yb³⁺ monitoring at 915 and 978 nm measured at 77 K.

References

- 1 Q. Y. Shao, H. Ding, L. Q. Yao, J. F. Xu, C. Liang and J. Q. Jiang, Photoluminescence properties of a ScBO₃:Cr³⁺ phosphor and its applications for broadband near-infrared LEDs, *RSC Adv.*, 2018, **8**, 12035–12042.
- 2 X.-D. Wei, L.-Y. Cai, F.-C. Lu, X.-L. Chen, X.-Y. Chen and Q.-L. Liu, Structure and luminescence of Ca₂Si₅N₈:Eu²⁺ phosphor for warm white light-emitting diodes, *Chinese Phys. B*, 2009, **18**, 3555–3562.
- 3 P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan and M. K. R. Warrier, Sensitized fluorescence of Ce³⁺/Mn²⁺ system in phosphate glass, *J. Phys. Chem. Solids*, 2003, **64**, 841–846.