Supporting Information

A Binuclear Copper Center-Incorporated Photocatalyst Applied in

Mimicing Enzyme Catalysis for Aerobic Hydroxylation of Phenylboronic

Acids

Chen Si^a, Xueling Liu^a, Junjie Xu^a, Jiangbo Xu^a, Pengtao Ma^a, Qiuxia Han^{a,*}

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China

*Corresponding author. E-mail address: hdhqx@henu.edu.cn

Contents

- 1. Supplementary Materials and Methods
- 2. Single-crystal X-ray Crystallography
- 3. Additional Structural and Characterizational Figures
- 4. Additional Catalysis Details
- 5. Supplementary References

1. Supplementary Materials and Methods

All solvents and reagents obtained from commercial sources were used without further purification. The Dawson-type polyoxometalate $K_{12}[\alpha-H_2P_2W_{12}O_{48}]_{24}$ · H_2O was prepared according to the literature and characterized by IR spectroscopy.^{s1} The EA of C, H and N were recorded on a Vario EL III elemental analyzer of the Flash 2000 analyzer and Optima 2100 DV. Fourier-transform infrared (FTIR) spectra of samples were recorded in a JASCO FT/IR-430 spectrometer over a range of 4000–400 cm⁻¹. The UV-vis diffuse reflectance spectra (DRS) were obtained on a HITACHI U-4100 UV-ViseNIR spectrometer equipped with 60 mm diameter integrating sphere using finely ground sample, at room temperature. The powder X-ray diffraction (PXRD) spectra were recorded on a Rigaku Model D/Max-2400 X-ray diffractometer with a sealed copper tube (λ = 1.54178 Å) in the angular range 2θ = 5–50°. Water contents were determined by TG analyses on a Mettler-Toledo TGA/SDTA 851^e instrument with a heating rate of 10 °C min⁻¹ heated from 25 to 800 °C under nitrogen. Inductively Coupled Plasma (ICP) of Cu, B, and W analyses were performed on a Jarrel-AshJ-A1100 spectrometer. The photocatalytic reaction was performed on WATTCAS Parallel Light Reactor (WP-TEC-1020HSL) with 10W 6000-6500K white COB LED. Photocurrent measurements were conducted on a CHI 660E electrochemical workstation (Shanghai Chenhua Instrument Co., China) in a standard three-electrode system. The Ag/AgCl electrode and platinum foil were used as the reference electrode and counter electrode, respectively. Furthermore, the 25 mg catalyst was dispersed uniformly in 1 mL ($H_2O/Et_2OH=1/4$) solution by ultrasound. The 80 uL above solution was coated on an indium tin oxide (ITO) glass (2 cm×1 cm) to dry naturally. Finally, the sample was covered with 40ul solution (Nafion: $Et_2OH =$ 1:3). In the frequency range from 0.1 to 100 000 Hz, the electrochemical impedance spectra (EIS) data were collected. The visible light source was a 300 W Xe lamp. The yields were tested on a gas chromatograph (Agilent 8860G2790A). The photoluminescence (PL) properties were obtained on a EDINBURGH FLS 980 fluorescence spectrophotometer equipped, which have a 450 W xenon lamp.

2. Single-crystal X-ray Crystallography

A good single crystal of **Cu(I)W–TPT** with dimensions of 0.1 × 0.08 × 0.12 mm³ was prudentially picked under an optical microscope and sealed to a glass tube closed at both ends. A suitable crystal was selected and on a Bruker D8 VENTURE PHOTON II diffractometer with graphite-monochromated Mo K α (λ = 0.71073 Å) at 284(2) K using SAINT and SMART programs. The crystal was kept at 168.08 K during data collection. Using Olex2⁵², the structure was solved with the olex2.solve⁵³ structure solution program using Charge Flipping and refined with the ShelXL⁵⁴ refinement package using Least Squares minimisation. All the atoms were refined anisotropically in the last refinement cycle. H atoms were fixed in calculated positions and then refined using a riding model. All of them are directly included in the molecular formula. The CCDC number of **Cu(I)W–TPT** is 2280692. Crystallographic data and structure refinements for **Cu(I)W–TPT** are listed in Table S1.

Crystal data	Cu(I)W–TPT
empirical formula	$C_{54}H_{36}CI_{0.5}Cu_2N_{18}O_{69.5}P_2W_{18}$
crystal system	triclinic
space group	P-1
<i>a</i> (Å)	14.1811(16)
b (Å)	17.970(3)
<i>c</i> (Å)	20.978(2)
α (deg)	91.429(6)
в (deg)	92.792(3)
γ (deg)	99.305(6)
V (ų)	5266.5(12)
Z	2
Т, К	168.08
μ / mm ⁻¹	20.111
F(000)	4941.0
2ϑ (deg)	4.34 - 50.2
Index ranges	$-16 \le h \le 16$, $-21 \le k \le 21$,
index ranges	-24 ≤ l ≤ 25
Reflections collected / unique	66019 / 18720 [Rint =
Reflections concercu / unique	0.0410, Rsigma = 0.0409]
Data / restraints / parameters	18720 / 6 / 1465
GOF	1.024
$R_1^{a} [(I > 2s(I))]$	0.0344
wR_2^{b} [I > 2s(I)]	0.0818
R_1^{a} (all data)	0.0442
wR_2^{b} (all data)	0.0863
diff peak and hole, eÅ ⁻³	2.04 / -2.53

Table S1. Crystal data and structure refinement for Cu(I)W–TPT.

[a] $R_1 = \sum ||Fo| - |Fc|| / \sum |Fo|$, [b] $wR_2 = [\sum w(Fo^2 - Fc^2)^2 / \sum w(Fo^2)^2]^{1/2}$; $w = 1/[\sigma^2(Fo^2) + (xP)^2 + yP]$, $P = (Fo^2 + 2Fc^2)/3$, where x = 0.0315, y = 65.1509 for **Cu(I)W-TPT**.

Bond	Length	Bond	Length	
W(1)-O(5)	1.865(7)	W(14)-O(30)	1.903(8)	
W(1)-O(9)	1.854(7)	W(15)-O(10)	1.902(8)	
W(2)-O(6)	1.909(7)	W(15)-O(17)	1.920(7)	
W(2)-O(19)	2.366(7)	W(16)-O(4)	2.340(7)	
W(3)-O(27)	1.956(7)	W(16)-O(11)	1.927(7)	
W(3)–O(35)	1.877(7)	W(17)-O(1)	2.442(7)	
W(4)-O(13)	1.880(7)	W(17)-O(7)	1.910(7)	
W(4)-O(12)	1.958(7)	W(18)-O(2)	2.378(7)	
W(5)–O(2)	2.329(6)	W(18)-O(13)	1.941(7)	
W(5)–O(9)	1.999(7)	P(00L)-O(2)	1.526(7)	
W(6)-O(1)	2.257(6)	P(00L)-O(4)	1.528(7)	
W(6)–O(7)	1.893(7)	P(00L)-O(19)	1.532(7)	
W(7)–O(30)	1.934(8)	P(00L)-O(43)	1.579(7)	
W(7)-O(31)	1.871(7)	P(00M)-O(1)	1.540(7)	
W(8)-O(3)	2.373(7)	P(00M)-O(3)	1.534(7)	
W(8)-O(6)	1.896(7)	P(00M)-O(37)	1.529(7)	
W(9)-O(4)	2.398(7)	P(00M)-O(61)	1.581(7)	
W(9)–O(5)	2.008(7)	Cu(1)-N(3)	2.016(9)	
W(10)-O(3)	2.339(7)	Cu(1)-N(7)	2.021(9)	
W(10)-O(8)	1.894(7)	Cu(1)-O(44)	1.959(7)	
W(11)-O(23)	1.870(7)	Cu(1)-O(2W)	1.969(8)	
W(11)-O(34)	1.931(8)	8) Cu(1)–O(1W)	2.383(9)	
W(12)-O(12)	1.902(7)	Cu(2)-N(9)	2.004(8)	
W(12)-O(17)	1.906(7)	Cu(2)-N(13)	2.012(9)	
W(13)-O(8)	1.881(7)	Cu(2)-O(48) ¹	2.348(7)	
W(13)-O(19)	2.393(6)	Cu(2)-O(3W)	2.024(8)	
W(14)-O(22)	1.909(7)	Cu(2)-O(4W)	1.9316(13)	
Bond	Angle	Bond	Angle	

Table S2. The selected bond lengths and angles of Cu(I)W–TPT.

Bond	Angle	Bond	Angle
O(5)-W(1)-O(14)	88.3(3)	O(13)-W(18)-O(2)	84.4(3)
O(5)-W(1)-O(36)	158.9(3)	O(13)-W(18)-O(27)	166.6(3)
O(6)-W(2)-O(19)	83.2(3)	O(2)-P(00L)-O(4)	111.4(4)
O(6)-W(2)-O(29)	89.6(3)	O(2)-P(00L)-O(19)	111.0(4)
O(14)-W(3)-O(43)	72.8(3)	O(2)-P(00L)-O(43)	107.0(4)
O(28)-W(3)-O(14)	157.7(3)	O(4)-P(00L)-O(19)	112.4(4)
O(13)-W(4)-O(32)	157.2(3)	O(4)-P(00L)-O(43)	107.9(4)
O(13)-W(4)-O(36)	88.9(3)	O(19)-P(00L)-O(43)	106.9(4)
O(9)-W(5)-O(2)	80.8(3)	O(1)-P(00M)-O(61)	107.1(4)
O(15)-W(5)-O(2)	74.0(3)	O(3)-P(00M)-O(0)	111.4(4)
O(7)-W(6)-O(1)	75.4(3)	O(3)-P(00M)-O(61)	107.6(4)

O(7)-W(6)-O(20)	161.5(3)	O(37)-P(00M)-O(1)	111.3(4)
O(30)-W(7)-O(40)	86.1(3)	O(37)-P(00M)-O(3)	111.7(4)
O(30)-W(7)-O(61)	72.3(3)	O(37)-P(00M)-O(61)	107.4(4)
O(6)-W(8)-O(3)	84.4(3)	N(3)-Cu(1)-N(7)	157.9(4)
O(6)-W(8)-O(16)	90.9(3)	N(3)-Cu(1)-O(1W)	97.1(4)
O(5)-W(9)-O(4)	80.7(3)	N(7)-Cu(1)-O(1W)	103.9(4)
O(11)-W(9)-O(4)	72.9(3)	O(44)-Cu(1)-N(3)	89.6(3)
O(8)-W(10)-O(3)	82.8(3)	O(44)-Cu(1)-N(7)	86.8(3)
O(8)-W(10)-O(16)	89.4(3)	O(44)-Cu(1)-O(2W)	169.1(3)
O(23)-W(11)-O(34)	89.9(3)	O(44)-Cu(1)-O(1W)	81.4(3)
O(23)-W(11)-O(40)	156.2(3)	O(2W)-Cu(1)-N(3)	93.6(4)
O(12)-W(12)-O(17)	158.3(3)	O(2W)-Cu(1)-N(7)	94.0(4)
O(12)-W(12)-O(24)	88.0(3)	O(2W)-Cu(1)-O(1W)	87.8(3)
O(8)-W(13)-O(19)	82.8(3)	N(9)-Cu(2)-N(13)	170.1(4)
O(8)-W(13)-O(26)	90.0(3)	N(9)-Cu(2)-O(48) ¹	97.3(3)
O(22)-W(14)-O(34)	157.8(3)	N(9)-Cu(2)-O(3W)	89.1(3)
O(22)-W(14)-O(39)	85.3(3)	N(13)-Cu(2)-O(48) ¹	92.5(3)
O(10)-W(15)-O(17)	157.0(3)	N(13)-Cu(2)-O(3W)	93.3(3)
O(10)-W(15)-O(23)	84.9(3)	O(3W)-Cu(2)-O(48)1	83.3(3)
O(11)-W(16)-O(4)	74.1(3)	O(4W)-Cu(2)-N(9)	87.5(3)
O(11)-W(16)-O(38)	88.9(3)	O(4W)-Cu(2)-N(13)	90.5(3)
O(7)-W(17)-O(1)	70.7(3)	O(4W)-Cu(2)-O(48)1	94.29(19)
O(7)-W(17)-O(22)	90.4(3)	O(4W)-Cu(2)-O(3W)	175.6(2)

3. Additional Structural and Characterizational Figures.

Figure S1. 3D open network of the Cu(I)W–TPT.

Figure S2. (a) IR spectra; (b)PXRD patterns (bottom, simulated; top, experimental); (c)TG-DTA of **Cu(I)W–TPT**.

Figure S3. (a) IR spectra of **Cu(I)W–TPT** in different organic solvents. (b) IR spectra of **Cu(I)W–TPT** in different aqueous with different pH values. The pH values were adjusted with 0.5 mol·L⁻¹ HCl (pH=2) and NaOH solutions (pH=10,12), respectively.

Figure S4. (a) XPS survey spectra of **Cu(I)W–TPT**; (b, c)The high-resolution XPS spectra of N 1s and C 1s.

Figure S5. (a, b) Excitation and emission spectra and Luminescence lifetime curve of Cu(I)W-TPT.

4. Additional Catalysis Details

The photocatalytic reaction was performed on WATTCAS Parallel Light Reactor with continuous cooling water equipment (WP-TEC-1020HSL). In a typical reaction system, phenylboronic acid (0.5 mmol), catalyst **Cu(I)W–TPT** (10 mg), Et₃N (0.6 mmol), and acetonitrile (2 mL) were added to a quartz tube (15 mL) equipped with a stir bar. A 10 W 6000-6500 K white COB LED was used as the light source by bottom irradiation. The temperature of the reaction was in the range of 25 ± 5 °C. After 24 h of reaction, the mixture was centrifuged to remove **Cu(I)W–TPT** samples. Then, the mixture was extracted with ethyl acetate, dried with anhydrous Na₂SO₄. The product was obtained by rotary evaporation at 40 °C. The conversion and selectivity were determined by ¹ H NMR.

Figure S6. Sketch portrays the reaction setup.

Figure S7. (a, b) FT-IR spectra and PXRD patterns after four recycles of Cu(I)W-TPT.

Catalyst	T(℃)	Light sourse	Oxidant	Additives	t (h)	Yield	Ref.
						(%)	
LZU-190-COF	r.t	20 W white LEDs	air	iPr ₂ NEt	48	99	S4
Zr-TCPCo	r.t	450 nm LED	0 ₂	Et_3N	24	91	S5
		irradiation					
CCN-P	r.t	blue LED lamp	02	Et₃N	4	99	S6
EFC-CMP	r.t	blue LEDs	air	DIPEA	1.3	91	S7
UiO-67- Ru(bpy)3-MOF	r.t	UV-365	air	iPr ₂ NEt	48	81	S8
$N-C/In_2O_3 HD$	r.t	blue LEDs	air	DIPEA	24	99	S9
Cz-POF-1	r.t	Fluorescence lamp	air	Et₃N	24	94	S10
CPOP-29	r.t	white LEDs	air	iPr ₂ NEt	48	98	S11
This work	r.t	10 W white LEDs	air	Et ₃ N	24	99	

Table S3. Summary of the activity of photocatalytic oxidation of Phenylboronic acid

Figure S8. ¹H NMR spectrum of phenyl hydroxide

¹H NMR (500 MHz, DMSO) δ 9.34 (s, 1H), 7.16 (t, J = 7.9 Hz, 2H), 6.89 – 6.67 (m, 3H).

Figure S9. ¹H NMR spectrum of 4-Methoxyphenol ¹H NMR (500 MHz, DMSO) δ 8.90 (s, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.69 (d, J = 9.0 Hz, 2H), 3.65 (s, 3H).

Figure S10. ¹H NMR spectrum of m-Methoxyphenol ¹H NMR (500 MHz, DMSO) δ 9.42 (s, 1H), 7.05 (t, J = 8.1 Hz, 1H), 6.48 – 6.23 (m, 3H), 3.69 (s, 3H).

Figure S11. ¹H NMR spectrum of 2-methoxy-Phenol ¹H NMR (500 MHz, DMSO) δ 8.88 (s, 1H), 6.89 (d, J = 2.6 Hz, 1H), 6.77 (t, J = 2.1 Hz, 1H), 6.75 (d, J = 2.5 Hz, 1H), 6.74 – 6.72 (m, 1H), 3.75 (s, 3H).

Figure S12. ¹H NMR spectrum of p-Cresol

¹H NMR (500 MHz, DMSO) δ 9.08 (s, 1H), 6.95 (d, J = 8.3 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 2.18 (s, 3H).

Figure S13. ¹H NMR spectrum of 4-Cyanophenol ¹H NMR (500 MHz, DMSO) δ 10.61 (s, 1H), 7.63 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H).

Figure S14. ¹H NMR spectrum of 4-Fluorophenol ¹H NMR (500 MHz, DMSO) δ 9.37 (s, 1H), 6.98 (t, J = 8.9 Hz, 2H), 6.75 (dd, J = 9.0, 4.5 Hz, 2H).

Figure S15. ¹H NMR spectrum of 4-Bromophenol ¹H NMR (500 MHz, DMSO) δ 9.71 (s, 1H), 7.32 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 8.9 Hz, 2H).

Figure S16. ¹H NMR spectrum of 3-Chlorophenol

¹H NMR (500 MHz, DMSO) δ 9.89 (s, 1H), 7.18 (t, J = 8.1 Hz, 1H), 6.82 (dd, J = 8.3, 1.6 Hz, 2H), 6.74 (d, J = 9.4 Hz, 1H).

Figure S17. ¹H NMR spectrum of 3-Fluorophenol

¹H NMR (500 MHz, DMSO) δ 9.85 (s, 1H), 7.18 (dd, J = 15.6, 8.0 Hz, 1H), 6.60 (s, 1H), 6.56 – 6.52 (m, 2H).

5. Supplementary References

S1 B. Godin, J. Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer, P. Gouzerh, Coordination chemistry of the hexavacant tungstophosphate $[H_2P_2W_{12}O_{48}]^{12-}$: synthesis and characterization of iron(III) complexes derived from the unprecedented $\{P_2W_{14}O_{54}\}$ fragment, *Chem. Commun.*, 2005, 5624.

S2 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, OLEX2: a complete structure solution, refinement and analysis program, H. (2009), *J. Appl. Cryst.* 42, 339-341.

S3 Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected, H. (2015). *Acta Cryst*. A71, 59-75.

S4 Sheldrick, G.M. (2015). SHELXT-Integrated space-group and crystal-structure determination, *Acta Cryst*. C71, 3-8.

S4 P. F. Wei, M. Z. Qi, Z. P. Wang, S. Y. Ding, W. Yu, Q. Liu, L. K. Wang, H. Z. Wang, W. K. An, W. Wang, Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis, *J. Am. Chem. Soc.*, 2018, 140, 4623–4631.

S5 Martin, C. R.; Park, K. C.; Leith, G. A.; Yu, J.; Mathur, A.; Wilson, G. R.; Gange, G. B.; Barth, E. L.; Ly, R. T.; Manley, O. M.; Forrester, K. L.; Karakalos, S. G.; Smith, M. D.; Makris, T. M.; Vannucci, A. K.; Peryshkov, D. V.; Shustova, N. B. Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. *J. Am. Chem. Soc.*, 2022, **144**, 4457–4468.

S5 Y. Xiao, C. M. Zhu, R. B. Liang, Y. L. Huang, C. H. Hai, J. R. Chen, M. Li, J. J. Zhong, X. C. Huang, Building a cobaloxime-based metal–organic framework for photocatalytic aerobic oxidation of arylboronic acids to phenols, *Chem. Commun.* 2023, **59**, 2239–2242.

S6 W. Ren, J. Cheng, H. Ou, C. Huang, M. Anpo, X. Wang, Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation, *J. Catal.*, 2020, **389**, 636–645.

S7 X. Dong, H. Hao, F. Zhang, X. Lang, Blue light photocatalysis of carbazole-based conjugated microporous polymers: Aerobic hydroxylation of phenylboronic acids to phenols, *Applied Catalysis B: Environmental.*, 2022, **309**, 121210.

S8 X. Yu, S.M. Cohen, Photocatalytic metal–organic frameworks for the aerobic oxidation of arylboronic acids, *Chem. Commun.*, 2015, **51**, 9880–9883.

S9 L. Sun, R. Li, W. Zhan, F. Wang, Y. Zhuang, X. Wang, X. Han, Rationally Designed Double-Shell Dodecahedral Microreactors with Efficient Photoelectron Transfer: N-Doped-C-Encapsulated Ultrafine In₂O₃ Nanoparticles, Chem. Eur. J. 25 (2019) 3053–3060.

S10 J. Luo, X. Zhang, J. Zhang, Carbazolic Porous Organic Framework as an Efficient, Metal-Free Visible-Light Photocatalyst for Organic Synthesis, ACS Catal. 5 (2015) 2250–2254.

S11 H. P. Liang, Q. Chen, B. H. Han, Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations, ACS Catal. 8 (2018) 5313–5322.