Supporting Information

Unlocking the catalytic potential of nickel sulfide for sugar-electrolysis: A green hydrogen generation from kitchen feedstock

Supriya A.Patil,^a Atul C. Khot,^b Kalyani D. Kadam,^c Hoa Thi Bui^{d,} Hyunsik Im,^e Nabeen K Shrestha ^{e,*}

^a Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

^b School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

^c Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea

^d Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam

^e Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

Corresponding author: Nabeen K. Shrestha (nabeenkshrestha@dongguk.edu)

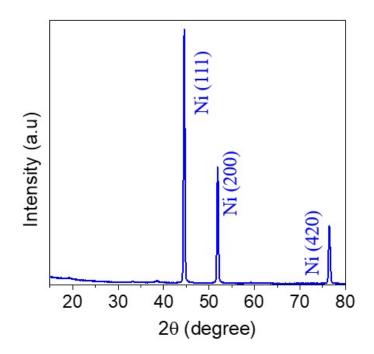
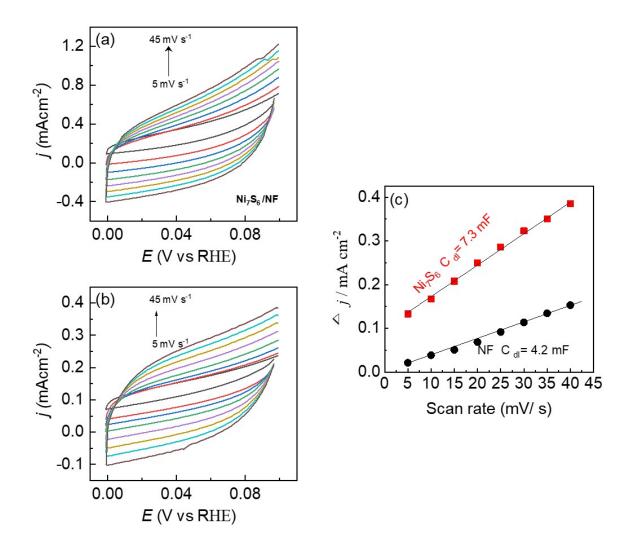
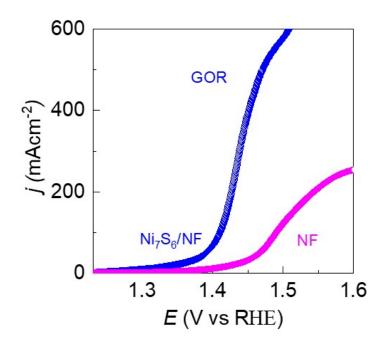
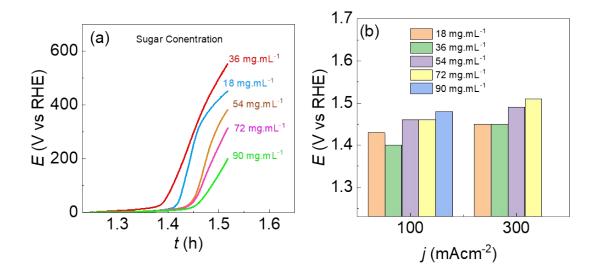
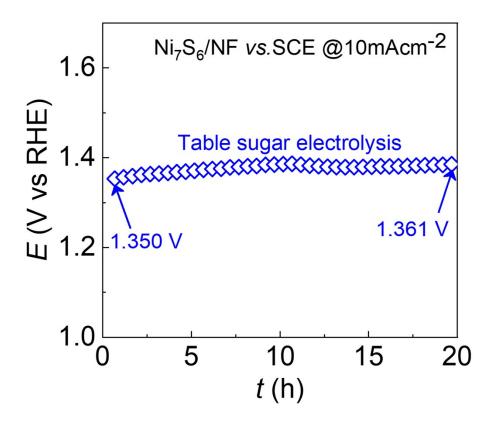



Figure S1. XRD pattern of a Ni_7S_6 film deposited in a NF-substrate.

Figure S2. (a)-(b) Cyclic voltammetry of Ni_7S_6/NF and bare NF electrode at various scan rates. (c) Capacitive current densities *vs* scan rate plot for electrodes in 0.1 M glucose added 1.0 M KOH solution.

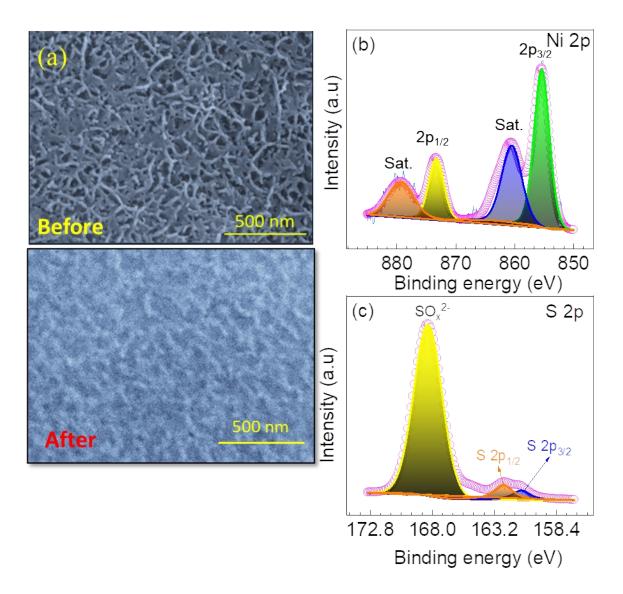

Figure S3. GOR LSV of bare NF

Figure S4. (a) SOR with various sugar concentrations^{*} in 1.0 M KOH solution. (b) Potential *vs*. SOR current density profile. * This is concentration based on the wight of the local brand sugar we used in the experiment, not the sucrose concentration.

Figure S5. Chronopotentiometric response of the Ni_7S_6/NF anode during electrolysis of 36 mg.mL⁻¹ of table-sugar in 1.0 M KOH solution, showing a long-term durability of the catalyst.

Figure S6. Structural, morphological, and activity analysis of Ni₇S₆/NF electrode after long-term stability test, (a) SEM images, (b)-(c) XPS,

Sr.n	Name	Electrolyte	Current density	GOR potential	Ref.
0			(mA.cm ⁻²)	V vs RHE	
	Ni ₇ S ₆ /NF	1M KOH	10	1.30	This work
		+0.1M	100	1.41	
		Glucose	400	1.45	
	Ni ₇ S ₆ /NF	Table Sugar	10	1.34	This work
			100	1.41	
			400	1.48	
	Ni ₇ S ₆ /NF	Juice	10	1.37	This work
			100	1.47	
			200	1.54	
1	Cu-doped@MIL-	1M KOH	10	1.35	Dalton
	88B/NF	+0.1M	100	1.42	<i>Trans.</i> , 2023,
		Glucose	200	1.46	Advance
					Article
2	NiCoSe	1M KOH	200	1.32	Inorg.
		+0.1M			Chem. 2023,
		Glucose			62, 26,
					10513–10521
3	NiFeOx	1M KOH	10	1.31	Nat.
		+0.1M	100	1.36	Commun.
		Glucose			2020, 11,
					265.
4	Fe ₂ P/SSM	1M KOH	10	1.35	Electrochem.
		+0.1M	100	1.40	Commun.
		Glucose			2017, 83,
					11-15
5	Co@NPC-800	1M KOH	10	1.46	Chem. Eng.
	~	+0.1M			J. 2022, 430
		Glucose			(1), 132783
6	Cu (OH) ₂	1M KOH	100	1.49	Adv. Mater.
	× /-	+0.1M			2021, 33,
		Glucose			2104791

Table S1. Literature and comparative analysis of GOR for various electrocatalysts.